Light microscopy is a practical tool for advancing biomedical research and diagnostics, offering invaluable insights into the cellular and subcellular structures of living organisms. However, diffraction and optical imperfections actively hinder the attainment of high-quality images. In recent years, there has been a growing interest in applying deep learning techniques to overcome these challenges in light microscopy imaging.
View Article and Find Full Text PDFObjective: To accurately estimate liver PDFF from chemical shift-encoded (CSE) MRI using a deep learning (DL)-based Multi-Decoder Water-Fat separation Network (MDWF-Net), that operates over complex-valued CSE-MR images with only 3 echoes.
Methods: The proposed MDWF-Net and a U-Net model were independently trained using the first 3 echoes of MRI data from 134 subjects, acquired with conventional 6-echoes abdomen protocol at 1.5 T.
IEEE Trans Pattern Anal Mach Intell
January 2022
The susceptibility of super paramagnetic iron oxide (SPIO) particles makes them a useful contrast agent for different purposes in MRI. These particles are typically quantified with relaxometry or by measuring the inhomogeneities they produced. These methods rely on the phase, which is unreliable for high concentrations.
View Article and Find Full Text PDF