Publications by authors named "Gabriel David Chaves-O'Flynn"

Ion bombardment with 30 keV Ga ions can locally change the magnetic properties of perpendicular magnetic anisotropy ferrimagnetic Tb/Co based multilayers. The induced changes in the effective magnetization create high gradients of magnetic fields in the proximity of the perimeters of the bombarded areas. Superparamagnetic, micrometer-sized beads floating in an aqueous suspension over such a patterned structure respond to the ensuing magnetostatic energy landscape.

View Article and Find Full Text PDF

Recent results showed that the ferrimagnetic compensation point and other characteristic features of Tb/Co ferrimagnetic multilayers can be tailored by He ion bombardment. With appropriate choices of the He ion dose, we prepared two types of lattices composed of squares with either Tb or Co domination. The magnetization reversal of the first lattice is similar to that seen in ferromagnetic heterostructures consisting of areas with different switching fields.

View Article and Find Full Text PDF

We show that it is possible to engineer magnetic multidomain configurations without domain walls in a prototypical rare-earth-transition-metal ferrimagnet using keV He^{+} ion bombardment. We additionally show that these patterns display a particularly stable magnetic configuration due to a deep minimum in the energy of the system caused by flux closure and a corresponding reduction of the magnetostatic energy without an increase in energy by exchange and anisotropy terms across the walls. This occurs because light-ion bombardment affects an element's relative contribution to the properties of the ferrimagnet differently.

View Article and Find Full Text PDF

The ability to perform wide-range tuning of the magnetic field required to switch the magnetization of ferromagnetic layers with perpendicular magnetic anisotropy is of great importance for many applications. We show that, for (Au/Co) multilayers, this field can be changed from minus several kOe to plus several kOe because of changes to the coupling with a ferrimagnetic multilayer [either (Tb/Fe) or (Tb/Co)] across a Au spacer (either homogeneous 1 nm thick or wedge-shaped). The adjustable parameters are the ratio of sublayer thicknesses of the ferrimagnet and the sequence of layers around the Au spacer.

View Article and Find Full Text PDF