Publications by authors named "Gabriel Dansereau"

Knowledge about how ecological networks vary across global scales is currently limited given the complexity of acquiring repeated spatial data for species interactions. Yet, recent developments in metawebs highlight efficient ways to first document possible interactions within regional species pools. Downscaling metawebs towards local network predictions is a promising approach to using the current data to investigate the variation of networks across space.

View Article and Find Full Text PDF

Background: Range maps are a useful tool to describe the spatial distribution of species. However, they need to be used with caution, as they essentially represent a rough approximation of a species' suitable habitats. When stacked together, the resulting communities in each grid cell may not always be realistic, especially when species interactions are taken into account.

View Article and Find Full Text PDF

Networks of species interactions underpin numerous ecosystem processes, but comprehensively sampling these interactions is difficult. Interactions intrinsically vary across space and time, and given the number of species that compose ecological communities, it can be tough to distinguish between a true negative (where two species never interact) from a false negative (where two species have not been observed interacting even though they actually do). Assessing the likelihood of interactions between species is an imperative for several fields of ecology.

View Article and Find Full Text PDF

Two major goals in the current biology of aging are to identify general mechanisms underlying the aging process and to explain species differences in aging. Recent research in humans suggests that one important driver of aging is dysregulation, the progressive loss of homeostasis in complex biological networks. Yet, there is a lack of comparative data for this hypothesis, and we do not know whether dysregulation is widely associated with aging or how well signals of homeostasis are conserved.

View Article and Find Full Text PDF