Publications by authors named "Gabriel D Puccini"

High-frequency oscillations in cortical networks have been linked to a variety of cognitive and perceptual processes. They have also been recorded in small cortical slices in vitro, indicating that neuronal synchronization at these frequencies is generated in the local cortical circuit. However, in vitro experiments have hitherto necessitated exogenous pharmacological or electrical stimulation to generate robust synchronized activity in the beta/gamma range.

View Article and Find Full Text PDF

Local neocortical circuits are characterized by stereotypical physiological and structural features that subserve generic computational operations. These basic computations of the cortical microcircuit emerge through the interplay of neuronal connectivity, cellular intrinsic properties, and synaptic plasticity dynamics. How these interacting mechanisms generate specific computational operations in the cortical circuit remains largely unknown.

View Article and Find Full Text PDF

Neurons throughout the rat vibrissa somatosensory pathway are sensitive to the angular direction of whisker movement. Could this sensitivity help rats discriminate stimuli? Here we use a simple computational model of cortical neurons to analyze the robustness of directional selectivity. In the model, directional preference emerges from tuning of synaptic conductance amplitude and latency, as in recent experimental findings.

View Article and Find Full Text PDF

Short-term synaptic depression (STD) and spike-frequency adaptation (SFA) are two basic physiological cortical mechanisms for reducing the system's excitability under repetitive stimulation. The computational implications of each one of these mechanisms on information processing have been studied in detail, but not so the dynamics arising from their combination in a realistic biological scenario. We show here, both experimentally with intracellular recordings from cortical slices of the ferret and computationally using a biologically realistic model of a feedforward cortical network, that STD combined with presynaptic SFA results in the resensitization of cortical synaptic efficacies in the course of sustained stimulation.

View Article and Find Full Text PDF