This study aimed to investigate the effect of the addition of organogels in low-fat and high-fat margarines during storage. Margarine formulations were made using water: oil ratios of 65:35 and 40:60 (w/w), and a lipid phase composed of organogel made with soybean oil, candelilla wax, fully hydrogenated palm oil, and mononoacylglycerols. The thermal stability, particle size, consistency, peroxide index, oil exudation, and microstructure of the margarines were evaluated for six months of storage.
View Article and Find Full Text PDFPlant-derived sterols, often referred to as phytosterols, are important constituents of plant membranes where they assist in maintaining phospholipid bilayer stability. Consumption of phytosterols has been suggested to positively affect human health by reducing cholesterol levels in blood via inhibition of its absorption in the small intestine, thus protecting against heart attack and stroke. Sterols are challenging analytes for mass spectrometry, since their low polarity makes them difficult to ionize by both electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI), typically requiring derivatization steps to overcome their low ionization efficiencies.
View Article and Find Full Text PDFThis review is the first to summarize a decade of studies testing the use of easy ambient sonic-spray ionization mass spectrometry (EASI-MS) and its several sister techniques, Venturi (V-EASI), thermal imprinting (TI-EASI) and Spartan (S-EASI) mass spectrometry in food quality control and authentication. Since minimal or no sample preparation is required, such ambient desorption/ionization techniques have been shown to provide direct, fast and selective fingerprinting characterization at the molecular level based on the pools of the most typical components. They have also been found to be applicable on intact, undisturbed samples or on simple solvent extracts.
View Article and Find Full Text PDFPlant sterols and their derivatives are minor compounds that have been extensively studied in vegetable oils, mainly in olive oil, where they are closely related with its identity. The objective of this work is to determine the content of free and esterified steryl glucosides and their profiles in olive oil in relation to different geographical situation of olive orchards, cultivar, farming modality, and sampling time. The orchards under study were located in the outer ring of the submetropolitan area of Madrid (Spain), where olives from Cornicabra, Manzanilla Cacereña, Manzanilla Castellana, and Picual varieties were grown under traditional and organic modes, and harvested in four different samplings.
View Article and Find Full Text PDFKnowledge of the major effects governing desorption/ionization efficiency is required for the development and application of ambient mass spectrometry. Although all triacylglycerols (TAG) have the same favorable protonation and cationization sites, their desorption/ionization efficiencies can vary dramatically during easy ambient sonic-spray ionization because of structural differences in the carbon chain. To quantify this somewhat surprising and drastic effect, we have performed a systematic investigation of desorption/ionization efficiencies as a function of unsaturation and length for TAG as well as for diacylglycerols, monoacylglycerols and several phospholipids (PL).
View Article and Find Full Text PDFThis work provides a short and easy protocol that allows the analysis of both methanol and ethanol in the static headspace of olive oil. The procedure avoids any kind of sample pre-treatment beyond that of heating the oil to allow a maximum volatile concentration in the headspace of the vials. The method's LOD is 0.
View Article and Find Full Text PDFCommercial lecithins are composed mainly of phospholipids and triacylglycerols. The analysis of the commercial lecithins, including their fraction of phospholipids, normally involves laborious and expensive protocols. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is shown to be an efficient technique for the analysis of lipids.
View Article and Find Full Text PDF