Publications by authors named "Gabriel Cornic"

Plant mutants for genes encoding subunits of mitochondrial complex I (CI; NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis (Arabidopsis thaliana) CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.

View Article and Find Full Text PDF

The plastid terminal oxidase PTOX is a plastohydroquinone:oxygen oxidoreductase that is important for carotenoid biosynthesis and plastid development. Its role in photosynthesis is controversially discussed. Under a number of abiotic stress conditions, the protein level of PTOX increases.

View Article and Find Full Text PDF

Thermoluminescence emission from wheat leaves was recorded under various controlled drought stress conditions: (i) fast dehydration (few hours) of excised leaves in the dark (ii) slow dehydration (several days) obtained by withholding watering of plants under a day/night cycle (iii) overnight rehydration of the slowly dehydrated plants at a stage of severe dessication. In fast dehydrated leaves, the AG band intensity was unchanged but its position was shifted to lower temperatures, indicating an activation of cyclic and chlororespiratory pathways in darkness, without any increase of their overall electron transfer capacity. By contrast, after a slow dehydration the AG intensity was strongly increased whereas its position was almost unchanged, indicating respectively that the capacity of cyclic pathways was enhanced but that they remained inactivated in darkness.

View Article and Find Full Text PDF

Photosynthetic responses to persisting mild water stress were compared between the wild type (WT) and the respiratory complex I mutant CMSII of Nicotiana sylvestris. In both genotypes, plants kept at 80% leaf-RWC (WT80 and CMSII80) had lower photosynthetic activity and stomatal/mesophyll conductances compared to well-watered controls. While the stomatal conductance and the chloroplastic CO2 molar ratio were similar in WT80 and CMSII80 leaves, net photosynthesis was higher in CMSII80.

View Article and Find Full Text PDF

Ranunculus glacialis leaves were tested for their plastid terminal oxidase (PTOX) content and electron flow to photorespiration and to alternative acceptors. In shade-leaves, the PTOX and NAD(P)H dehydrogenase (NDH) content were markedly lower than in sun-leaves. Carbon assimilation/light and Ci response curves were not different in sun- and shade-leaves, but photosynthetic capacity was the highest in sun-leaves.

View Article and Find Full Text PDF

To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling.

View Article and Find Full Text PDF

Cyclic electron flow around photosystem I drives additional proton pumping into the thylakoid lumen, which enhances the protective non-photochemical quenching and increases ATP synthesis. It involves several pathways activated independently. In whole barley leaves, P700 oxidation under far-red illumination and subsequent P700(+) dark reduction kinetics provide a major probe of the activation of cyclic pathways.

View Article and Find Full Text PDF

On water deficit, abscisic acid (ABA) induces stomata closure to reduce water loss by transpiration. To identify Arabidopsis thaliana mutants which transpire less on drought, infrared thermal imaging of leaf temperature has been used to screen for suppressors of an ABA-deficient mutant (aba3-1) cold-leaf phenotype. Three novel mutants, called hot ABA-deficiency suppressor (has), have been identified with hot-leaf phenotypes in the absence of the aba3 mutation.

View Article and Find Full Text PDF

While the possible importance of the tricarboxylic acid (TCA) cycle reactions for leaf photosynthesis operation has been recognized, many uncertainties remain on whether TCA cycle biochemistry is similar in the light compared with the dark. It is widely accepted that leaf day respiration and the metabolic commitment to TCA decarboxylation are down-regulated in illuminated leaves. However, the metabolic basis (i.

View Article and Find Full Text PDF

Root respiration is a major contributor to soil CO2 efflux, and thus an important component of ecosystem respiration. But its metabolic origin, in relation to the carbon isotope composition (delta13C), remains poorly understood. Here, 13C analysis was conducted on CO2 and metabolites under typical conditions or under continuous darkness in French bean (Phaseolus vulgaris) roots.

View Article and Find Full Text PDF

Day respiration is the process by which nonphotorespiratory CO2 is produced by illuminated leaves. The biological function of day respiratory metabolism is a major conundrum of plant photosynthesis research: because the rate of CO2 evolution is partly inhibited in the light, it is viewed as either detrimental to plant carbon balance or necessary for photosynthesis operation (e.g.

View Article and Find Full Text PDF

Substantial lateral CO(2) diffusion rates into leaf areas where stomata were blocked by grease patches were quantified by gas exchange and chlorophyll a fluorescence imaging in different species across the full range of photosynthetic photon flux densities (PPFD). The lateral CO(2) flux rate over short distances was substantial and very similar in five dicotyledonous species with different vascular anatomies (two species with bundle sheath extensions, sunflower [Helianthus annuus] and dwarf bean [Phaseolus vulgaris]; and three species without bundle sheath extensions, faba bean [Vicia faba], petunia [Petunia hybrida], and tobacco [Nicotiana tabacum]). Only in the monocot maize (Zea mays) was there little or no evident lateral CO(2) flux.

View Article and Find Full Text PDF

In order to study the impact of a decline of leaf internal CO(2) molar ratio on nitrate reductase (NR) and sucrose-phosphate synthase (SPS) activities, leaves of wheat (Triticum durum) were submitted to different treatments: slow or rapid dehydration and decline in ambient CO(2) concentration and abscisic acid (ABA) supply. In agreement with the literature, NR activity of slowly dehydrated leaves was inhibited by about 50% when net CO(2) assimilation (A(n)) decreased by 45%. NR activity of stressed leaves kept 4 h in air containing 5% CO(2) or after 2 d of re-watering was only partially restored.

View Article and Find Full Text PDF

Very little is known about the primary carbon metabolism of the high mountain plant Ranunculus glacialis. It is a species with C3 photosynthesis, but with exceptionally high malate content in its leaves, the biological significance of which remains unclear. 13C/12C-isotope ratio mass spectrometry (IRMS) and 13C-nuclear magnetic resonance (NMR) labelling were used to study the carbon metabolism of R.

View Article and Find Full Text PDF

In situ (13)C/(12)C isotopic labelling was conducted in field-grown beech (Fagus sylvatica) twigs to study carbon respiration and allocation. This was achieved with a portable gas-exchange open system coupled to an external chamber. This method allowed us to subject leafy twigs to CO(2) with a constant carbon isotope composition (delta(13)C of -51.

View Article and Find Full Text PDF

Lateral diffusion of CO(2) was investigated in photosynthesizing leaves with different anatomy by gas exchange and chlorophyll a fluorescence imaging using grease to block stomata. When one-half of the leaf surface of the heterobaric species Helianthus annuus was covered by 4-mm-diameter patches of grease, the response of net CO(2) assimilation rate (A) to intercellular CO(2) concentration (C(i)) indicated that higher ambient CO(2) concentrations (C(a)) caused only limited lateral diffusion into the greased areas. When single 4-mm patches were applied to leaves of heterobaric Phaseolus vulgaris and homobaric Commelina communis, chlorophyll a fluorescence images showed dramatic declines in the quantum efficiency of photosystem II electron transport (measured as F(q)'/F(m)') across the patch, demonstrating that lateral CO(2) diffusion could not support A.

View Article and Find Full Text PDF

Day respiration of illuminated C(3) leaves is not well understood and particularly, the metabolic origin of the day respiratory CO(2) production is poorly known. This issue was addressed in leaves of French bean (Phaseolus vulgaris) using (12)C/(13)C stable isotope techniques on illuminated leaves fed with (13)C-enriched glucose or pyruvate. The (13)CO(2) production in light was measured using the deviation of the photosynthetic carbon isotope discrimination induced by the decarboxylation of the (13)C-enriched compounds.

View Article and Find Full Text PDF

Drought is a major abiotic stress affecting all levels of plant organization and, in particular, leaf elongation. Several experiments were designed to study the effect of water deficits on maize (Zea mays) leaves at the protein level by taking into account the reduction of leaf elongation. Proteomic analyses of growing maize leaves allowed us to show that two isoforms of caffeic acid/5-hydroxyferulic 3-O-methyltransferase (COMT) accumulated mostly at 10 to 20 cm from the leaf point of insertion and that drought resulted in a shift of this region of maximal accumulation toward basal regions.

View Article and Find Full Text PDF

The origin of the carbon atoms in the CO(2) respired by French bean (Phaseolus vulgaris) leaves in the dark has been studied using (13)C/(12)C isotopes as tracers. The stable isotope labeling was achieved through a technical device that uses an open gas-exchange system coupled online to an elemental analyzer and linked to an isotope ratio mass spectrometer. The isotopic analysis of the CO(2) respired in the dark after a light period revealed that the CO(2) was labeled, but the labeling level decreased progressively as the dark period increased.

View Article and Find Full Text PDF

The importance of the mitochondrial electron transport chain in photosynthesis was studied using the tobacco (Nicotiana sylvestris) mutant CMSII, which lacks functional complex I. Rubisco activities and oxygen evolution at saturating CO(2) showed that photosynthetic capacity in the mutant was at least as high as in wild-type (WT) leaves. Despite this, steady-state photosynthesis in the mutant was reduced by 20% to 30% at atmospheric CO(2) levels.

View Article and Find Full Text PDF

The carbon isotope composition (delta(13)C) of CO(2) produced in darkness by intact French bean (Phaseolus vulgaris) leaves was investigated for different leaf temperatures and during dark periods of increasing length. The delta(13)C of CO(2) linearly decreased when temperature increased, from -19 per thousand at 10 degrees C to -24 per thousand at 35 degrees C. It also progressively decreased from -21 per thousand to -30 per thousand when leaves were maintained in continuous darkness for several days.

View Article and Find Full Text PDF

Stomatal closure can explain the inhibition of net CO2 uptake by a leaf subjected to a mild drought: the photosynthetic apparatus appears resistant to lack of water. Changes in both the water content of leaves maintained in a constant environment and the ambient CO2 molar fraction during measurements on well-hydrated leaves lead to similar effects on net CO2 uptake and whole chain electron transport as estimated by leaf chlorophyll fluorescence measurements. In particular, it is shown that photosystem II (PSII) functioning and its regulation are not qualitatively changed during desiccation and that the variations in PSII photochemistry can simply be understood by changes in substrate availability in this condition.

View Article and Find Full Text PDF