Neisseria gonorrhoeae exhibits alarming antibiotic resistance trends and poses a significant challenge in therapeutic management. This study aimed to explore the association of penA alleles with penicillin-binding protein (PBP) occupancy patterns and reduced outer membrane permeability, impacting susceptibility to last-line cephalosporins and potential β-lactam candidates. The whole genome sequence, the MICs and PBP IC50s were determined for 12 β-lactams and β-lactamase inhibitors in 8 clinical isolates with varying β-lactam sensitivity, 2 ATCC, and 3 WHO cephalosporin-resistant reference strains.
View Article and Find Full Text PDFBackground: Pseudomonas aeruginosa is a major cause of hospital-acquired and chronic infections, characterised by an extraordinary capacity to develop antimicrobial resistance through the selection of chromosomal mutations, leading to treatment failure. Here, we designed and tested a hybridisation-based capture system for the enrichment of genes of interest before sequencing to monitor resistant populations genomics directly from clinical samples.
Methods: A panel for enrichment before sequencing of close to 200 genes related to P.
Unlabelled: infection (CDI) causes alterations in the intestinal microbiota, frequently associated with changes in the gut metabolism of bile acids and cholesterol. In addition to the impact on microbiome composition and given the metabolic changes occurring during CDI, our work focuses on the importance to know the effects at the local and systemic levels, both during the infection and its treatment, by paying particular attention to plasma lipid metabolism due to its relationship with CDI pathogenesis. Specific changes, characterized by a loss of microbial richness and diversity and related to a reduction in short-chain acid-producing bacteria and an increase in bile salt hydrolase-producing bacteria, were observed in the gut microbiota of CDI patients, especially in those suffering from recurrent CDI (RCDI).
View Article and Find Full Text PDFChromosomal and transferable AmpC β-lactamases represent top resistance mechanisms in different gram-negatives, but knowledge regarding the latter, mostly concerning regulation and virulence-related implications, is far from being complete. To fill this gap, we used (KP) and two different plasmid-encoded AmpCs [DHA-1 (AmpR regulator linked, inducible) and CMY-2 (constitutive)] as models to perform a study in which we show that blockade of peptidoglycan recycling through AmpG permease inactivation abolished DHA-1 inducibility but did not affect CMY-2 production and neither did it alter KP pathogenic behavior. Moreover, whereas regular production of both AmpC-type enzymes did not attenuate KP virulence, when DHA-1 was expressed in an -defective mutant, killing was significantly (but not drastically) attenuated.
View Article and Find Full Text PDFUnlabelled: The use of immune compounds as antimicrobial adjuvants is a classic idea recovering timeliness in the current antibiotic resistance scenario. However, the activity of certain antimicrobial peptides against ESKAPE Gram-negatives has not been sufficiently investigated. The objective of this study was to determine the activities of human defensins HNP-1 and hBD-3 alone or combined with permeabilizing/peptidoglycan-targeting agents against clinical ESKAPE Gram-negatives [ (AB), (EC), (KP), and acute/chronic (PA)].
View Article and Find Full Text PDFObjectives: To analyse the dynamics and mechanisms of stepwise resistance development to cefiderocol in Pseudomonas aeruginosa.
Methods: Cefiderocol resistance evolution was analysed in WT PAO1, PAOMS (mutS mutator derivate) and three XDR clinical isolates belonging to ST111, ST175 and ST235 clones. Strains were incubated in triplicate experiments for 24 h in iron-depleted CAMHB with 0.
Several Pseudomonas aeruginosa AmpC mutants have emerged that exhibit enhanced activity against ceftazidime and ceftolozane, while also evading inhibition by avibactam. Interestingly, P. aeruginosa strains harboring these AmpC mutations fortuitously exhibit enhanced carbapenem susceptibility.
View Article and Find Full Text PDFIn the current scenario of growing antibiotic resistance, understanding the interplay between resistance mechanisms and biological costs is crucial for designing therapeutic strategies. In this regard, intrinsic AmpC β-lactamase hyperproduction is probably the most important resistance mechanism of Pseudomonas aeruginosa, proven to entail important biological burdens that attenuate virulence mostly under peptidoglycan recycling alterations. P.
View Article and Find Full Text PDFJ Antimicrob Chemother
September 2022
Objectives: To evaluate the activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam against a clinical and laboratory collection of ceftolozane/tazobactam- and ceftazidime/avibactam-resistant Pseudomonas aeruginosa β-lactamase mutants.
Methods: The activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam, cefepime/zidebactam and comparators was evaluated against a collection of 30 molecularly characterized ceftolozane/tazobactam- and/or ceftazidime/avibactam-resistant P. aeruginosa isolates from patients previously treated with cephalosporins.
To analyze the SARS-CoV-2 genomic epidemiology in the Balearic Islands, a unique setting in which the course of the pandemic has been influenced by a complex interplay between insularity, severe social restrictions and tourism travels. Since the onset of the pandemic, more than 2,700 SARS-CoV-2 positive respiratory samples have been randomly selected and sequenced in the Balearic Islands. Genetic diversity of circulating variants was assessed by lineage assignment of consensus whole genome sequences with PANGOLIN and investigation of additional spike mutations.
View Article and Find Full Text PDFObjectives: To analyse the dynamics and mechanisms of stepwise resistance development to ceftolozane/tazobactam and imipenem/relebactam in XDR Pseudomonas aeruginosa clinical strains.
Methods: XDR clinical isolates belonging to ST111 (main resistance mechanisms: oprD-, dacB-, CARB-2), ST175 (oprD-, ampR-G154R) and ST235 (oprD-, OXA-2) high-risk clones were incubated for 24 h in Müeller-Hinton Broth with 0.125-64 mg/L of ceftolozane + tazobactam 4 mg/L or imipenem + relebactam 4 mg/L.
Objectives: To study the dynamics, mechanisms and fitness cost of resistance selection to cefepime, zidebactam and cefepime/zidebactam in Pseudomonas aeruginosa.
Methods: WT P. aeruginosa PAO1 and its ΔmutS derivative (PAOMS) were exposed to stepwise increasing concentrations of cefepime, zidebactam and cefepime/zidebactam.
Objectives: Pseudomonas aeruginosa frequently show MDR/XDR profiles, which are associated with worldwide-disseminated high-risk clones (HRCs). We developed a PCR assay for the detection in clinical samples of ST175, an HRC that is widespread in European countries.
Methods: The whole-genome sequence was obtained for one ST175 isolate using a PacBio RSII sequencer.
J Antimicrob Chemother
January 2021
Background: The development of resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of Pseudomonas aeruginosa infections is concerning.
Objectives: Characterization of the mechanisms leading to the development of OXA-10-mediated resistance to ceftolozane/tazobactam and ceftazidime/avibactam during treatment of XDR P. aeruginosa infections.
Background: Pseudomonas aeruginosa may develop resistance to novel cephalosporin/β-lactamase inhibitor combinations during therapy through the acquisition of structural mutations in AmpC.
Objectives: To describe the molecular and biochemical mechanisms involved in the development of resistance to ceftolozane/tazobactam in vivo through the selection and overproduction of a novel AmpC variant, designated PDC-315.
Methods: Paired susceptible/resistant isolates obtained before and during ceftolozane/tazobactam treatment were evaluated.
Objectives: We analysed the dynamics and mechanisms of resistance development to imipenem alone or combined with relebactam in Pseudomonas aeruginosa WT (PAO1) and mutator (PAOMS; ΔmutS) strains.
Methods: PAO1 or PAOMS strains were incubated for 24 h in Mueller-Hinton Broth with 0.125-64 mg/L of imipenem ± relebactam 4 mg/L.
Endoscope contamination is infrequent but can be the source of nosocomial infections and outbreaks. In August 2016, an unexpected increase in the incidence of amikacin-resistant P. aeruginosa isolates (AK-Pae) was observed at a tertiary care center in the south of Spain.
View Article and Find Full Text PDFEnferm Infecc Microbiol Clin (Engl Ed)
December 2020
Introduction: We characterized AmpC β-lactamase mutations that resulted in ceftolozane/tazobactam resistance in extensively drug-resistant (XDR) Pseudomonas aeruginosa isolates recovered from patients treated with this agent from June 2016 to December 2018.
Methods: Five pairs of ceftolozane/tazobactam susceptible/resistant P. aeruginosa XDR isolates were included among a total of 49 patients treated.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFObjectives: The combination of cefepime and the novel β-lactam enhancer zidebactam (WCK 5222) is under development for the treatment of difficult-to-treat Gram-negative infections. Against MBL-producing pathogens, cefepime and zidebactam induce cell elongation and spheroplast formation, indicating PBP3 and PBP2 dysfunction, respectively, having a potent bactericidal effect as a combination. The objective of the present study was to determine the mechanistic basis of the bactericidal effect of cefepime/zidebactam on MBL-expressing pathogens.
View Article and Find Full Text PDFLimited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug-resistant clinical Pseudomonas aeruginosa isolates.
View Article and Find Full Text PDFImipenem and imipenem-relebactam MICs were determined for 1,445 clinical isolates and a large panel of isogenic mutants showing the most relevant mutation-driven β-lactam resistance mechanisms. Imipenem-relebactam showed the highest susceptibility rate (97.3%), followed by colistin and ceftolozane-tazobactam (both 94.
View Article and Find Full Text PDFUnlike for classes A and B, a standardized amino acid numbering scheme has not been proposed for the class C (AmpC) β-lactamases, which complicates communication in the field. Here, we propose a scheme developed through a collaborative approach that considers both sequence and structure, preserves traditional numbering of catalytically important residues (Ser, Lys, Tyr, and Lys), is adaptable to new variants or enzymes yet to be discovered and includes a variation for genetic and epidemiological applications.
View Article and Find Full Text PDFis one of the first causes of acute nosocomial and chronic infections in patients with underlying respiratory pathologies such as cystic fibrosis (CF). It has been proposed that accumulates mutations driving to peptidoglycan modifications throughout the development of the CF-associated infection, as a strategy to lower the immune detection hence ameliorating the chronic persistence. As well, some studies dealing with peptidoglycan modifications driving to a better survival within the host have been published in other gram-negatives.
View Article and Find Full Text PDF