Publications by authors named "Gabriel Barletta"

Background: Encapsulation of siRNA fragments inside liposome vesicles has emerged as an effective method for delivering siRNAs in vitro and in vivo. However, the liposome's fluid-phospholipid bilayer of liposomes allows siRNA fragments to diffuse out of the liposome, decreasing the dose concentration and therefore the effectiveness of the carrier. We have previously reported that β-cyclodextrins formulated in liposomes help increase the stability of siRNAs in cell culture medium.

View Article and Find Full Text PDF

Liposomes are among the most effective vehicles to deliver siRNAs to cells, both and . However, despite numerous efforts to improve the potential of liposomes, siRNAs begin to leach out of liposomes as soon as they are formulated. This decreases the value of liposomes for drug delivery purposes significantly, masking their true potential.

View Article and Find Full Text PDF

In view of the clear evidence that urokinase type plasminogen activator (uPA) plays an important role in the processes of tumor cell metastasis, aortic aneurysm, and multiple sclerosis, it has become a target of choice for pharmacological intervention. The goal of this study was thus to determine the presence of inhibitors of uPA in plants known traditionally for their anti-tumor properties. Crude methanol extracts were prepared from the leaves of plants (14) collected from the subtropical dry forest (Guanica, Puerto Rico), and tested for the presence of inhibitors of uPA using the fibrin plate assay.

View Article and Find Full Text PDF

The siRNA transfection efficiency of nanoparticles (NPs), composed of a superparamagnetic iron oxide core modified with polycationic polymers (poly(hexamethylene biguanide) or branched polyethyleneimine), were studied in CHO-K1 and HeLa cell lines. Both NPs demonstrated to be good siRNA transfection vehicles, but unmodified branched polyethyleneimine (25 kD) was superior on both cell lines. However, application of an external magnetic field during transfection (magnetofection) increased the efficiency of the superparamagnetic NPs.

View Article and Find Full Text PDF

The potential of enzyme catalysis in organic solvents for synthetic applications has been overshadowed by the fact that their catalytic properties are affected by organic solvents. In addition, it has recently been shown that an enzyme's initial activity diminishes considerably after prolonged exposure to organic media. Studies geared towards understanding this last drawback have yielded unclear results.

View Article and Find Full Text PDF

The activity of Thermoanaerobium brockii alcohol dehydrogenase (TBADH) adsorbed on mesoporous silica SBA-15 was compared with that of the free enzyme in water and in biphasic system (water phase up to 50% v/v water). TBADH was active at a water concentration ≥10% v/v. In the reduction reaction of sulcatone to sulcatol carried out in biphasic systems, the yield obtained with SBA-15-adsorbed TBADH was up to 5.

View Article and Find Full Text PDF

Enzyme catalysis in organic solvents is a powerful tool for stereo-selective synthesis but the enantioselectivity is still hard to predict. To overcome this obstacle, we employed a nanoparticulate formulation of subtilisin Carlsberg (SC) and designed a series of 14 structurally related racemic alcohols. They were employed in the model transesterification reaction with vinyl butyrate and the enantioselectivities were determined.

View Article and Find Full Text PDF

Polycationic systems based on poly(hexamethylene biguanide) (PHMBG), branched polyethyleneimine (PEI) and poly(N-vinylguanidine) (PVG) have been evaluated as heterogeneous catalysts for the transesterification of sunflower oil by methanol. Insoluble networks are synthesized via crosslinking of PHMBG by either 4,4'-methylenebis(N,N-diglycidylaniline) or polyisocyanate prepolymer, PEI with sebacoyl chloride, and PVG with 1,4-butanediol diglycidyl ether. PHMBG and its crosslinked networks appeared to be remarkably efficient catalysts, enabling 80-100% triglyceride conversion within 0.

View Article and Find Full Text PDF

The potential of enzyme catalysis as a tool for organic synthesis is nowadays indisputable, as is the fact that organic solvents affect an enzyme's activity, selectivity and stability. Moreover, it was recently realized that an enzyme's initial activity is substantially decreased after prolonged exposure to organic media, an effect that further hampers their potential as catalysts for organic synthesis. Regrettably, the mechanistic reasons for these effects are still debatable.

View Article and Find Full Text PDF

It has been previously reported that prolonged exposure of an enzyme to organic solvents leads to substantial decrease of activity. This effect was found to be unrelated to the catalysts' structure or their possible aggregation in organic solvents, and up to the present day the cause for activity loss remains unclear. In the present work, the structural dynamics of the serine protease subtilisin Carlsberg (SC) have been investigated during prolonged exposure to two organic solvents by following hydrogen/deuterium (H/D) exchange of mobile protons.

View Article and Find Full Text PDF

Protein stability remains one of the main factors limiting the realization of the full potential of protein therapeutics. Poly(ethylene glycol) (PEG) conjugation to proteins has evolved into an important tool to overcome instability issues associated with proteins. The observed increase in thermodynamic stability of several proteins upon PEGylation has been hypothesized to arise from reduced protein structural dynamics, although experimental evidence for this hypothesis is currently missing.

View Article and Find Full Text PDF

A combined approach based on the use of ATR-FT/IR and steady-state fluorescence spectroscopy allowed to shed light on the effects of the additive methoxypolyethylene glycol (MePEG) on the hydration, conformation and dynamic properties of lipase from Burkholderia cepacia dehydrated to form a film. Spectroscopic data show that the additive has little effect on the structure of the protein; however, H/D exchange kinetic and fluorescence anisotropy suggest a more flexible enzyme molecule when in the presence of MePEG. By infrared spectroscopy, we estimated that, after conditioning the films at water activity of 1, the water content in the lipase dehydrated with MePEG is 5.

View Article and Find Full Text PDF

The employment of enzymes as catalysts within organic media has traditionally been hampered by the reduced enzymatic activities when compared to catalysis in aqueous solution. Although several complementary hypotheses have provided mechanistic insights into the causes of diminished activity, further development of biocatalysts would greatly benefit from effective chemical strategies (e.g.

View Article and Find Full Text PDF

Background: Enzymes have been extensively used in organic solvents to catalyze a variety of transformations of biological and industrial significance. It has been generally accepted that in dry aprotic organic solvents, enzymes are kinetically trapped in their conformation due to the high-energy barrier needed for them to unfold, suggesting that in such media they should remain catalytically active for long periods. However, recent studies on a variety of enzymes demonstrate that their initial high activity is severely reduced after exposure to organic solvents for several hours.

View Article and Find Full Text PDF

Lipase from Burkholderia cepacia (lipase BC) and lipase B from Candida antarctica (CALB) show an increase of the transesterification activity in toluene (up to 2.4- and 1.7-fold, respectively), when lyophilized with 18-crown-6.

View Article and Find Full Text PDF

Enzymes are attractive catalysts for the production of optically active compounds in organic solvents. However, their often low catalytic activity in such applications hampers their practical use. To overcome this, we investigated the effectiveness of the covalent modification of alpha-chymotrypsin with methoxy poly(ethylene glycol) (PEG) with a Mw of 5,000 to enhance its activity.

View Article and Find Full Text PDF

Colyophilization with methyl-beta-cyclodextrin activates subtilisin Carlsberg by more than 200-fold in organic solvents, though this is a short-lived effect. About 93% of the enzyme's high initial activity observed in THF (at 45 degrees C) decreases exponentially with a t(1/2) of 1.8 h, until it reaches a residual activity (of 7%) that remains constant throughout the 4 days duration of the experiment.

View Article and Find Full Text PDF

In this study we explored the efficiency of the additive methyl-beta-cyclodextrin (M beta CD) to enhance the activity and enantioselectivity of the serine protease subtilisin Carlsberg in organic solvents. These two parameters, measured for different transesterification reactions and in several solvents, are compared with results obtained by using two additional preparations of the same enzyme: lyophilized powder and cross-linked enzyme crystals (CLEC). The results suggest that co-lyophilization of subtilisin with M beta CD preserves the enzyme's active site tertiary structure rendering a highly active and enantioselective catalyst.

View Article and Find Full Text PDF