J Comp Physiol A Neuroethol Sens Neural Behav Physiol
October 2024
Sleep replay activity involves the reactivation of brain structures with patterns similar to those observed during waking behavior. In this study, we demonstrate that adult male canaries exhibit spontaneous, song-like peripheral reactivation during night sleep. Our findings include: (1) the presence of activity in respiratory muscles, leading to song-like air sac pressure patterns of low amplitude, (2) the simultaneous occurrence of respiratory replay events and reactivation of syringeal muscles, and (3) the reactivation of syringeal muscles without concurrent respiratory system activity.
View Article and Find Full Text PDFIn this work, we used a dynamical system derived from an avian vocal production model to generate synthetic songs that mimic the Zonotrichia capensis songs. We confirmed that these synthetic renditions elicited behavioral responses similar to those evoked by real songs in wild songbirds of the same species. Specifically, we observed an increase in the singing rate of individual birds when a playback device was introduced into their territories.
View Article and Find Full Text PDFDuring sleep, sporadically, it is possible to find neural patterns of activity in areas of the avian brain that are activated during the generation of the song. It has recently been found that in the vocal muscles of a sleeping bird, it is possible to detect activity patterns during these silent replays. In this work, we employ a dynamical systems model for song production in suboscine birds in order to translate the vocal muscles activity during sleep into synthetic songs.
View Article and Find Full Text PDFVocal behavior plays a crucial evolutionary role. In the case of birds, song is critically important in courtship, male-male competition and other key behaviors linked to reproduction. However, under natural conditions, a variety of avian species live in close proximity and share an 'acoustic landscape'.
View Article and Find Full Text PDFThe time series recordings of typical songs of songbirds exhibit highly complex and structured behavior, which is characteristic of their species and stage of development, and need to be analyzed by methods that can uncover their correlation structure. Here we analyze a typical song of a canary using Hurst exponents and multifractal analysis, which uncovers the correlation structure of typical song segments. These are then compared with the corresponding quantities from shuffled data, which destroys the temporal correlations and iterative amplitude-adjusted Fourier transform (IAAFT) data.
View Article and Find Full Text PDFWe present a dynamical model for the avian respiratory system and report the measurement of its variables in normal breathing canaries (Serinus canaria). Fitting the parameters of the model, we are able to show that the birds in our study breathe at an aerodynamic resonance of their respiratory system. For different respiratory regimes, such as singing, where rapid respiratory gestures are used, the nonlinearities of the model lead to a shift in its resonances toward higher frequency values.
View Article and Find Full Text PDFHow vocal communication signals are represented in the cortex is a major challenge for behavioural neuroscience. Beyond a descriptive code, it is relevant to unveil the dynamical mechanism responsible for the neural representation of auditory stimuli. In this work, we report evidence of synchronous neural activity in nucleus HVC, a telencephalic area of canaries (Serinus canaria), in response to auditory playback of the bird's own song.
View Article and Find Full Text PDFBirdsong is a complex vocal behavior, which emerges out of the interaction between a nervous system and a highly nonlinear vocal device, the syrinx. In this work we discuss how low dimensional dynamical systems, interpretable in terms of the biomechanics involved, are capable of synthesizing realistic songs. We review the experimental and conceptual steps that lead to the formulation of low dimensional dynamical systems for the song system and describe the tests that quantify their success.
View Article and Find Full Text PDFActivation of forebrain circuitry during sleep has been variably characterized as 'pre- or replay' and has been linked to memory consolidation. The evolutionary origins of this mechanism, however, are unknown. Sleep activation of the sensorimotor pathways of learned birdsong is a particularly useful model system because the muscles controlling the vocal organ are activated, revealing syringeal activity patterns for direct comparison with those of daytime vocal activity.
View Article and Find Full Text PDFThe complex vocalizations found in different bird species emerge from the interplay between morphological specializations and neuromuscular control mechanisms. In this work we study the dynamical mechanisms used by a nonlearner bird from the Americas, the suboscine Pitangus sulphuratus, in order to achieve a characteristic timbre of some of its vocalizations. By measuring syringeal muscle activity, air sac pressure, and sound as the bird sings, we are able to show that the birds of this species manage to lock the frequency difference between two sound sources.
View Article and Find Full Text PDFReconstructing the flow of a dynamical system from experimental data has been a key tool in the study of nonlinear problems. It allows one to discover the equations ruling the dynamics of a system as well as to quantify its complexity. In this work, we study the topology of the flow reconstructed by autoencoders, a dimensionality reduction method based on deep neural networks that has recently proved to be a very powerful tool for this task.
View Article and Find Full Text PDFVocal production in songbirds is a key topic regarding the motor control of a complex, learned behavior. Birdsong is the result of the interaction between the activity of an intricate set of neural nuclei specifically dedicated to song production and learning (known as the "song system"), the respiratory system and the vocal organ. These systems interact and give rise to precise biomechanical motor gestures which result in song production.
View Article and Find Full Text PDFIn this work we study the sound production mechanism of the raspy sounding song of the white-tipped plantcutter (Phytotoma rutila), a species with a most unusual vocalization. The biomechanics involved in the production of this song, and scaling arguments, allowed us to predict the precise way in which body size is encoded in its vocalizations. We tested this prediction through acoustic analysis of recorded songs, computational modeling of its unusual vocal strategy, and inspection of museum specimens captured across southeastern and south-central South America.
View Article and Find Full Text PDFBirdsong production involves the simultaneous and precise control of a set of muscles that change the configuration and dynamics of the vocal organ. Although it has been reported that each one of the different muscles is primarily involved in the control of one acoustic feature, recent advances have shown that they act synergistically to achieve the dynamical state necessary for phonation. In this work, we present a set of criteria that allow the extraction of gating-related information from the electromyographic activity of the syringealis ventralis muscle, a muscle that has been shown to be involved in frequency modulation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2018
The coordination of complex vocal behaviors like human speech and oscine birdsong requires fine interactions between sensory and motor programs, the details of which are not completely understood. Here, we show that in sleeping male zebra finches (), the activity of the song system selectively evoked by playbacks of their own song can be detected in the syrinx. Electromyograms (EMGs) of a syringeal muscle show playback-evoked patterns strikingly similar to those recorded during song execution, with preferred activation instants within the song.
View Article and Find Full Text PDFVocal development is usually studied from the perspective of neuroscience. In this issue, Zhang and Ghazanfar propose a way in which body growth might condition the process. They study the vocalizations of marmoset infants with a wide range of techniques that include computational models and experiments that mimic growth reversal.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
February 2018
Behavior emerges from the interaction between the nervous system and peripheral devices. In the case of birdsong production, a delicate and fast control of several muscles is required to control the configuration of the syrinx (the avian vocal organ) and the respiratory system. In particular, the syringealis ventralis muscle is involved in the control of the tension of the vibrating labia and thus affects the frequency modulation of the sound.
View Article and Find Full Text PDFBrain activity during sleep is fairly ubiquitous and the best studied possible function is a role in memory consolidation, including motor memory. One suggested mechanism of how neural activity effects these benefits is through reactivation of neurons in patterns resembling those of the preceding experience. The specific patterns of motor activation replayed during sleep are largely unknown for any system.
View Article and Find Full Text PDFBirdsong, a rich and complex behavior, is a stellar model to understand a variety of biological problems, from motor control to learning. It also enables us to study how behavior emerges when a nervous system, a biomechanical device and the environment interact. In this review, I will show that many questions in the field can benefit from the approach of nonlinear dynamics, and how birdsong can inspire new directions for research in dynamics.
View Article and Find Full Text PDFThe evolution of complex behavior is driven by the interplay of morphological specializations and neuromuscular control mechanisms [1-3], and it is often difficult to tease apart their respective contributions. Avian vocal learning and associated neural adaptations are thought to have played a major role in bird diversification [4-8], whereas functional significance of substantial morphological diversity of the vocal organ remains largely unexplored. Within the most species-rich order, Passeriformes, "tracheophones" are a suboscine group that, unlike their oscine sister taxon, does not exhibit vocal learning [9] and is thought to phonate with tracheal membranes [10, 11] instead of the two independent sources found in other passerines [12-14].
View Article and Find Full Text PDFPLoS Comput Biol
August 2017
Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC) has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the "breaking" of song structure when HVC is cooled.
View Article and Find Full Text PDFCurr Opin Syst Biol
June 2017
Birdsong emerges when a set of highly interconnected brain areas manage to generate a complex output. This consists of precise respiratory rhythms as well as motor instructions to control the vocal organ configuration. In this way, during birdsong production, dedicated cortical areas interact with life-supporting ones in the brainstem, such as the respiratory nuclei.
View Article and Find Full Text PDFBirdsong is a learned motor behavior controlled by an interconnected structure of neural nuclei. This pathway is bilaterally organized, with anatomically indistinguishable structures in each brain hemisphere. In this work, we present a computational model whose variables are the average activities of different neural nuclei of the song system of oscine birds.
View Article and Find Full Text PDFWe develop an extension of the Ott-Antonsen method [E. Ott and T. M.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
May 2016
Vocal communication is an unique example, where the nonlinear nature of the periphery can give rise to complex sounds even when driven by simple neural instructions. In this work we studied the case of two close-related bird species, Patagioenas maculosa and Patagioenas picazuro, whose vocalizations differ only in the timbre. The temporal modulation of the fundamental frequency is similar in both cases, differing only in the existence of sidebands around the fundamental frequency in the P.
View Article and Find Full Text PDF