IEEE Trans Vis Comput Graph
September 2024
Dimensionality reduction techniques are widely used for visualizing high-dimensional data. However, support for interpreting patterns of dimension reduction results in the context of the original data space is often insufficient. Consequently, users may struggle to extract insights from the projections.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2024
This study presents insights from interviews with nineteen Knowledge Graph (KG) practitioners who work in both enterprise and academic settings on a wide variety of use cases. Through this study, we identify critical challenges experienced by KG practitioners when creating, exploring, and analyzing KGs that could be alleviated through visualization design. Our findings reveal three major personas among KG practitioners - KG Builders, Analysts, and Consumers - each of whom have their own distinct expertise and needs.
View Article and Find Full Text PDFPresenting a predictive model's performance is a communication bottleneck that threatens collaborations between data scientists and subject matter experts. Accuracy and error metrics alone fail to tell the whole story of a model - its risks, strengths, and limitations - making it difficult for subject matter experts to feel confident in their decision to use a model. As a result, models may fail in unexpected ways or go entirely unused, as subject matter experts disregard poorly presented models in favor of familiar, yet arguably substandard methods.
View Article and Find Full Text PDFPhotoswitches are molecules that undergo a reversible, structural isomerization after exposure to certain wavelengths of light. The dynamic control offered by molecular photoswitches is favorable for materials chemistry, photopharmacology, and catalysis applications. Ideal photoswitches absorb visible light and have long-lived metastable isomers.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2023
Projection techniques are often used to visualize high-dimensional data, allowing users to better understand the overall structure of multi-dimensional spaces on a 2D screen. Although many such methods exist, comparably little work has been done on generalizable methods of inverse-projection - the process of mapping the projected points, or more generally, the projection space back to the original high-dimensional space. In this article we present NNInv, a deep learning technique with the ability to approximate the inverse of any projection or mapping.
View Article and Find Full Text PDF