Publications by authors named "Gabriel Amaro Monteiro"

Recently, cell-based therapies have been explored as a strategy to enhance the specificity of anticancer therapeutic agents. In this perspective, human mesenchymal stromal cells (MSC) hold a promising future as cell delivery systems for anticancer proteins due to their unique biological features. In this study, we engineered human MSC to secrete a human codon-optimized version of azurin (hazu), a bacterial protein that has demonstrated anticancer activity toward different cancer models both and .

View Article and Find Full Text PDF

Immune response against an encoded antigenic protein can be elicited by including targeting sequences to DNA vaccines that promote protein sorting to processing pathways, related with antigen presentation by major histocompatibility complexes (MHC). Candidate DNA vaccines coding for neuraminidase 3 of the avian influenza virus were designed to encode different sequences that direct the protein to specific cellular compartments such as endoplasmic reticulum (i.e.

View Article and Find Full Text PDF

Trypanosoma brucei is the etiological agent responsible for African trypanosomiasis, an infectious pathology which represents a serious problem of public health and economic losses in Sub-Saharan Africa. As one of the foremost neglected illnesses, few resources have been available for the development of vaccines or new drugs, in spite of the current therapeutical drugs showing little efficiency and high toxicity. Hence, it is obviously important to widen effective therapeutics and preventive strategies against African trypanosomiasis.

View Article and Find Full Text PDF

African trypanosomiasis (AT), also known as sleeping sickness in humans and Nagana in animals, is a disease caused by the protozoan parasite Trypanosoma brucei. AT is an extremely debilitating disease in human, cattle, and wild animals, and the treatment is difficult with frequent relapses. This work shows that BALB-c mice immunized intramuscularly with a single dose (100 microg) of a plasmid DNA encoding the 5'-terminal region of the trans-sialidase (nTSA) gene of T.

View Article and Find Full Text PDF