Background: Carcass weight (HCW) and marbling (MARB) are critical for meat quality and market value in beef cattle. In composite breeds like Brangus, which meld the genetics of Angus and Brahman, SNP-based analyses have illuminated some genetic influences on these traits, but they fall short in fully capturing the nuanced effects of breed of origin alleles (BOA) on these traits. Focus on the impacts of BOA on phenotypic features within Brangus populations can result in a more profound understanding of the specific influences of Angus and Brahman genetics.
View Article and Find Full Text PDFBackground: Thermal stress in subtropical regions is a major limiting factor in beef cattle production systems with around $369 million being lost annually due to reduced performance. Heat stress causes numerous physiological and behavioral disturbances including reduced feed intake and decreased production levels. Cattle utilize various physiological mechanisms such as sweating to regulate internal heat.
View Article and Find Full Text PDFComposite breeds, including Brangus, are widely utilized in subtropical and tropical regions to harness the advantages of both Bos t. taurus and Bos t. indicus breeds.
View Article and Find Full Text PDFBackground: In beef cattle, more than 50% of the energy input to produce a unit of beef is consumed by the female that produced the calf. Development of genomic tools to identify females with high genetic merit for reproductive function could increase the profitability and sustainability of beef production.
Results: Genome-wide association studies (GWAS) were performed using a single-step genomic best linear unbiased prediction approach on pregnancy outcome traits from a population of Angus-Brahman crossbred heifers.
Cattle lose heat predominantly through cutaneous evaporation at the skin-hair coat interface when experiencing heat stress. Sweating ability, sweat gland properties, and hair coat properties are a few of the many variables determining the efficacy of evaporative cooling. Sweating is a significant heat dissipation mechanism responsible for 85% of body heat loss when temperatures rise above 86⁰F.
View Article and Find Full Text PDF