A three-dimensional layer-by-layer (LbL) structure composed by xanthan and galactomannan biopolymers over dioctadecyldimethylammonium bromide (DODAB) liposome template was proposed and characterized for protein drug delivery. The polymers and the surfactant interaction were sufficiently strong to create a LbL structure up to 8 layers, evaluated using quartz crystal microbalance (QCM) and zeta potential analysis. The polymer-liposome binding enthalpy was determined by isothermal titration calorimetry (ITC).
View Article and Find Full Text PDFThe interactions of the cationic surfactant DODAB with anionic xanthan (XAN) and nonionic galactomannan (GMC) polysaccharides in solution were investigated using tensiometry, differential scanning microcalorimetry (μ-DSC), zeta potential and dynamic light scattering (DLS) techniques and by the calculated thermodynamic parameters of ΔG(ves)(0), ΔG(ads)(0), Γ(max) and a(min). The surfactant formed large unilamellar vesicles (LUV) that aggregated with both the polymers in solution. Increasing DODAB concentrations resulted in greater and greater DODAB-XAN aggregates, high turbidity and even precipitation, while DODAB-GMC aggregates remained equal sized, clear solution and no precipitation observed.
View Article and Find Full Text PDF