Publications by authors named "Gabriel A Subuyuj"

Transposon mutagenesis utilizes transposable genetic elements that integrate into a recipient genome to generate random insertion mutations which are easily identified. This forward genetic approach has proven powerful in elucidating complex processes, such as various pathways in methylotrophy. In the past decade, many methylotrophic bacteria have been shown to possess alcohol dehydrogenase enzymes that use lanthanides (Lns) as cofactors.

View Article and Find Full Text PDF

Lanthanide elements have been recently recognized as "new life metals" yet much remains unknown regarding lanthanide acquisition and homeostasis. In Methylorubrum extorquens AM1, the periplasmic lanthanide-dependent methanol dehydrogenase XoxF1 produces formaldehyde, which is lethal if allowed to accumulate. This property enabled a transposon mutagenesis study and growth studies to confirm novel gene products required for XoxF1 function.

View Article and Find Full Text PDF

A pink-pigmented facultative methylotroph, Pinkel, was isolated from compost by selective enrichment with caffeine (3,5,7-trimethylxanthine) as the sole carbon, nitrogen, and energy source. We report here its high-quality draft genome sequence, assembled in 35 contigs totaling 5,630,907 bp. We identified 5,681 protein-coding sequences, including those putatively involved in caffeine degradation.

View Article and Find Full Text PDF

Although alcohols are toxic to many microorganisms, they are good carbon and energy sources for some bacteria, including many pseudomonads. However, most studies that have examined chemosensory responses to alcohols have reported that alcohols are sensed as repellents, which is consistent with their toxic properties. In this study, we examined the chemotaxis of strain F1 to -alcohols with chain lengths of 1 to 12 carbons.

View Article and Find Full Text PDF

Unlabelled: Lanthanides are utilized by microbial methanol dehydrogenases, and it has been proposed that lanthanides may be important for other type I alcohol dehydrogenases. A triple mutant strain (mxaF xoxF1 xoxF2; named MDH-3), deficient in the three known methanol dehydrogenases of the model methylotroph Methylobacterium extorquens AM1, is able to grow poorly with methanol if exogenous lanthanides are added to the growth medium. When the gene encoding a putative quinoprotein ethanol dehydrogenase, exaF, was mutated in the MDH-3 background, the quadruple mutant strain could no longer grow on methanol in minimal medium with added lanthanum (La).

View Article and Find Full Text PDF

Unlabelled: Methylobacterium extorquens AM1 has two distinct types of methanol dehydrogenase (MeDH) enzymes that catalyze the oxidation of methanol to formaldehyde. MxaFI-MeDH requires pyrroloquinoline quinone (PQQ) and Ca in its active site, while XoxF-MeDH requires PQQ and lanthanides, such as Ce and La. Using MeDH mutant strains to conduct growth analysis and MeDH activity assays, we demonstrate that M.

View Article and Find Full Text PDF