This paper presents a complete electromechanical (EM) model of piezoelectric transducers (PTs) independent of high or low coupling assumptions, vibration conditions, and geometry. The PT's spring stiffness is modeled as part of the domain coupling transformer, and the piezoelectric EM coupling coefficient is modeled explicitly as a split inductor transformer. This separates the coupling coefficient from the coefficient used for conversion between mechanical and electrical domains, providing a more insightful understanding of the energy transfers occurring within a PT and allowing for analysis not previously possible.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
December 2010
A fundamental problem that miniaturized systems, such as biomedical implants, face is limited space for storing energy, which translates to short operational life. Harvesting energy from the surrounding environment, which is virtually a boundless source at these scales, can overcome this restriction, if losses in the system are sufficiently low. To that end, the 2-μm bi-complementary metal-oxide semiconductor switched-inductor piezoelectric harvester prototype evaluated and presented in this paper eliminates the restrictions associated with a rectifier to produce and channel 30 μW from a periodic 72- μW piezoelectric source into a battery directly.
View Article and Find Full Text PDF