Microbiology (Reading)
September 2024
Many cyanobacteria, both unicellular and filamentous, exhibit surface motility driven by type IV pili (T4P). While the component parts of the T4P machinery described in other prokaryotes are largely conserved in cyanobacteria, there are also several T4P proteins that appear to be unique to this phylum. One recently discovered component is EbsA, which has been characterized in two unicellular cyanobacteria.
View Article and Find Full Text PDFUnlabelled: Multicellular cyanobacteria, like rely on septal junctions for cell-cell communication, which is crucial for coordinating various physiological processes including differentiation of N-fixing heterocysts, spore-like akinetes, and hormogonia-short, motile filaments important for dispersal. In this study, we functionally characterize a protein, encoded by gene Npun_F4142, which in a random mutagenesis approach, initially showed a motility-related function. The reconstructed Npun_F4142 knockout mutant exhibits further distinct phenotypic traits, including altered hormogonia formation with significant reduced motility, inability to differentiate heterocysts and filament fragmentation.
View Article and Find Full Text PDFAlthough the photosynthetic cyanobacteria are monophyletic, they exhibit substantial morphological diversity across species, and even within an individual species due to phenotypic plasticity in response to life cycles and environmental signals. This is particularly prominent among the multicellular filamentous cyanobacteria. One example of this is the appearance of tapering at the filament termini.
View Article and Find Full Text PDF