Purpose: To report 8-year clinical outcome with high-dose-rate brachytherapy (HDRBT) boost using MRI-only workflow for intermediate (IR) and high-risk (HR) prostate cancer (PC) patients.
Methods And Materials: Fifty-two patients were treated with 46-60 Gy of 3D conformal radiotherapy preceded and/or followed by a single dose of 8-10 Gy MRI-guided HDRBT. Interventions were performed in a 0.
Endometrial cancer is the most common invasive gynecologic malignancy in developed countries. The best survival rates are expected after surgical removal, thus the aim of a complex treatment is to achieve resecability in locally and locoregionally advanced disease. The primary purpose of this study was to evaluate if the neoadjuvant systemic treatment leads to better overall survival compared to irradiation solely.
View Article and Find Full Text PDFThe aim of our pilot study was to demonstrate the feasibility and dosimetric quality of MR-guided HDR prostate brachytherapy in a low-field 0.35T open MRI scanner and to present our initial clinical experiences. 16 patients with intermediate- to high-risk localized prostate cancer were treated with 46-60 Gy of external beam radiotherapy preceded and/or followed by an 8 Gy MR-guided HDR boost.
View Article and Find Full Text PDFIn the treatment of early stage breast cancer, breast conserving surgery (BCS) followed by whole breast irradiation (WBI) is the standard treatment. The impact of the tumor bed boost following WBI is well-defined, but there are various delivery methods. In this study we demonstrate our 4 year experience with the 3-D conformal boost technique.
View Article and Find Full Text PDFUnlike mammals, rhythmic changes in serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase [AANAT]) transcripts in chicken pineal cells are controlled by an oscillator located in the pinealocytes themselves, which is comprised of clock genes. Asimilar clock-dependent pathway has been postulated to regulate the retinal melatonin rhythm. In chicken retinal photoreceptor cells and pinealocytes, the chicken AANAT gene (cAANAT) is coexpressed with clock genes, including cBmal1 and cClock, which might regulate cAANAT transcription.
View Article and Find Full Text PDFAntagonists of growth hormone-releasing hormone (GHRH) synthesized previously inhibit proliferation of various human cancers, but derivatisation with fatty acids could enhance their clinical efficacy. We synthesized a series of antagonists of GHRH(1-29)NH(2) acylated at the N terminus with monocarboxylic or alpha,omega-dicarboxylic acids containing six to sixteen carbon atoms. These peptides are analogs of prior potent antagonists JV-1-36, JV-1-38, and JV-1-65 with phenylacetyl group at their N terminus.
View Article and Find Full Text PDFIn birds, rhythmic changes in pineal serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, Aanat) transcripts are controlled by an oscillator located in the pinealocytes themselves which is comprised by clock genes. Our previous data indicated a temporal association between the expressions of chicken Bmal1 clock gene and Aanat suggesting a functional molecular link between them. Here, we studied the effect of cBmal1 antisense oligonucleotides containing locked nucleic acid on cAanat transcripts and melatonin production in cultured chicken pinealocytes transfected in superfusion system.
View Article and Find Full Text PDFVarious attempts to detect human pituitary growth hormone-releasing hormone receptor (pGHRH-R) in neoplastic extrapituitary tissues have thus far failed. Recently, four splice variants (SVs) of GHRH-R have been described, of which SV1 has the highest structural homology to pGHRH-R and likely plays a role in tumor growth. The aim of this study was to reinvestigate whether human tumors and normal human extrapituitary tissues express the pGHRH-R and to corroborate our previous findings on its SVs.
View Article and Find Full Text PDFAntagonists of growth hormone-releasing hormone (GHRH) were shown to inhibit the growth of various cancers. We investigated the antitumor activity and the mechanism of action of GHRH antagonists in human non-Hodgkin's lymphomas (NHL). Nude mice bearing xenografts of RL and HT human NHL were treated with GHRH antagonists MZ-5-156 and MZ-J-7-138 at a dose of 40 microg twice daily.
View Article and Find Full Text PDFAntagonists of GHRH are being developed for the treatment of various cancers. In this study we investigated in vivo and in vitro the effects of the GHRH antagonist MZ-J-7-118 and its mechanism of action in HEC-1A human endometrial cancer. Treatment of nude mice bearing HEC-1A xenografts with 10 mug/d MZ-J-7-118 for 6 wk significantly inhibited the volume of HEC-1A tumors by 43%, tumor weight by 40% compared with controls and prolonged the tumor doubling time from 18.
View Article and Find Full Text PDFAntagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of various human cancers by multiple mechanisms, which include direct effects on tumor cells through the splice variants (SV) of the GHRH receptor. Our findings suggest that the tumoral protein encoded by SV 1 (SV1) is a likely functional receptor. The aim of this study was to develop a polyclonal antiserum against a polypeptide analog of segment 1-25 of the putative SV1 receptor protein.
View Article and Find Full Text PDFOur previous studies showed that treatment of female rats with large doses of Cetrorelix, an antagonist of luteinizing hormone-releasing hormone (LHRH), reduces levels of serum LH, estradiol, progesterone, and the concentration of pituitary LHRH receptors (LHRH-Rs) and their mRNA expression. Serum LH and testosterone levels and pituitary LHRH-R in male rats are also decreased by high doses of Cetrorelix. This approach can be used for therapy of sex hormone-dependent cancers.
View Article and Find Full Text PDFAntagonists of human growth hormone-releasing hormone (hGHRH) with increased potency and improved enzymatic and chemical stability are needed for potential clinical applications. We synthesized 21 antagonistic analogs of hGHRH(1-29)NH(2), substituted at positions 8, 9, and 10 of the common core sequence [phenylacetyl-Tyr(1), d-Arg(2,28), para-chloro-phenylalanine 6, Arg(9)/homoarginine 9, Tyr(10)/O-methyltyrosine 10, alpha-aminobutyric acid 15, norleucine 27, Har(29)] hGHRH(1-29)NH(2). Inhibitory effects on hGHRH-induced GH release were evaluated in vitro in a superfused rat pituitary system, as well as in vivo after i.
View Article and Find Full Text PDF