Publications by authors named "Gabor Timar"

Triadic closure, the formation of a connection between two nodes in a network sharing a common neighbor, is considered a fundamental mechanism determining the clustered nature of many real-world topologies. In this work we define a static triadic closure (STC) model for clustered networks, whereby starting from an arbitrary fixed backbone network, each triad is closed independently with a given probability. Assuming a locally treelike backbone we derive exact expressions for the expected number of various small, loopy motifs (triangles, 4-loops, diamonds, and 4-cliques) as a function of moments of the backbone degree distribution.

View Article and Find Full Text PDF

Classical percolation theory underlies many processes of information transfer along the links of a network. In these standard situations, the requirement for two nodes to be able to communicate is the presence of at least one uninterrupted path of nodes between them. In a variety of more recent data transmission protocols, such as the communication of noisy data via error-correcting repeaters, both in classical and quantum networks, the requirement of an uninterrupted path is too strict: two nodes may be able to communicate even if all paths between them have interruptions or gaps consisting of nodes that may corrupt the message.

View Article and Find Full Text PDF

We study the crackling noise emerging during single crack propagation in a specimen under three-point bending conditions. Computer simulations are carried out in the framework of a discrete element model where the specimen is discretized in terms of convex polygons and cohesive elements are represented by beams. Computer simulations revealed that fracture proceeds in bursts whose size and waiting-time distributions have a power-law functional form with an exponential cutoff.

View Article and Find Full Text PDF