Despite its importance for public transportation, communication within organizations or the general understanding of organized knowledge, our understanding of how human individuals navigate complex networked systems is still limited owing to the lack of datasets recording a sufficient amount of navigation paths of individual humans. Here, we analyse 10587 paths recorded from 259 human subjects when navigating between nodes of a complex word-morph network. We find a clear presence of systematic detours organized around individual hierarchical scaffolds guiding navigation.
View Article and Find Full Text PDFHumans are involved in various real-life networked systems. The most obvious examples are social and collaboration networks but the language and the related mental lexicon they use, or the physical map of their territory can also be interpreted as networks. How do they find paths between endpoints in these networks? How do they obtain information about a foreign networked world they find themselves in, how they build mental model for it and how well they succeed in using it? Large, open datasets allowing the exploration of such questions are hard to find.
View Article and Find Full Text PDFThe last two decades of network science have discovered stunning similarities in the topological characteristics of real life networks (many biological, social, transportation and organizational networks) on a strong empirical basis. However our knowledge about the operational paths used in these networks is very limited, which prohibits the proper understanding of the principles of their functioning. Today, the most widely adopted hypothesis about the structure of the operational paths is the shortest path assumption.
View Article and Find Full Text PDFCommon sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks.
View Article and Find Full Text PDF