Publications by authors named "Gabor L Petheo"

Members of the NOX/DUOX family of NADPH oxidases are responsible for regulated ROS production in diverse cells and tissues. Detection of NOX/DUOX proteins at the protein level remains an important challenge in the field. Here we report the development and characterization of a novel anti-NOX5 monoclonal antibody, which recognizes the human NOX5 protein in both Western blot, immunocytochemistry, and histochemistry applications.

View Article and Find Full Text PDF

Regulated production of ROS is mainly attributed to Nox family enzymes. In neutrophil granulocytes and macrophages, Nox2 has a crucial role in bacterial killing, and the absence of phagocytic ROS production leads to the development of CGD. Expression of Nox2 was also described in B lymphocytes, where the role of the enzyme is still poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • The study identifies NOX5 NADPH oxidase as a key enzyme in human spermatozoa that produces reactive oxygen species (ROS) necessary for sperm function.
  • Immunofluorescence microscopy reveals NOX5 localization in sperm structures, and experiments show that various treatments increase superoxide production, which can be inhibited by specific blockers.
  • The research suggests that NOX5 is crucial for both ROS generation and improved motility in sperm, indicating its potential role in reproductive health.
View Article and Find Full Text PDF

Voltage-gated proton current (I(Hv)) has been characterized in several cell types, but the majority of the data was collected in phagocytes, especially in human granulocytes. The prevailing view about the role of I(Hv) in phagocytes is that it is an essential supporter of the intense and sustained activity of Nox2 (the core enzyme of the phagocyte NADPH oxidase complex) during respiratory burst. Recently H(v)1, a voltage-gated proton channel, was cloned, and leukocytes from H(v)1 knockout mice display impaired respiratory burst.

View Article and Find Full Text PDF

The phagocytic NADPH oxidase (phox) moves electrons across cell membranes to kill microbes. The activity of this lethal enzyme is tightly regulated, but the mechanisms that control phox inactivation are poorly understood for lack of appropriate assays. The phox generates measurable electron currents, I(e), that are associated with inward proton currents, I(H).

View Article and Find Full Text PDF

The NADPH oxidase is the main weapon of phagocytic white blood cells that are the first line of defence of our body against invading pathogens, and patients lacking a functional oxidase suffer from severe and recurrent infections. The oxidase is a multisubunit enzyme complex that transports electrons from cytoplasmic NADPH to molecular oxygen in order to generate superoxide free radicals. Electron transport across the plasma membrane is electrogenic and is associated with the flux of protons through voltage-activated proton channels.

View Article and Find Full Text PDF

The phagocytic NADPH oxidase generates superoxide by transferring electrons from cytosolic NADPH to extracellular O2. The activity of the oxidase at the plasma membrane can be measured as electron current (I(e)), and the voltage dependence of I(e) was recently reported to exhibit a strong rectification in human eosinophils, with the currents being nearly voltage independent at negative potentials. To investigate the underlying mechanism, we performed voltage-clamp experiments on inside-out patches from human eosinophils activated with PMA.

View Article and Find Full Text PDF

The NADPH-oxidase is a plasma membrane enzyme complex that enables phagocytes to generate superoxide in order to kill invading pathogens, a critical step in the host defense against infections. The oxidase transfers electrons from cytosolic NADPH to extracellular oxygen, a process that requires concomitant H+ extrusion through depolarization-activated H+ channels. Whether H+ fluxes are mediated by the oxidase itself is controversial, but there is a general agreement that the oxidase and H+ channel are intimately connected.

View Article and Find Full Text PDF

The involvement of cell volume in the K+-evoked Ca2+ signaling was studied in cultured rat glomerulosa cells. Previously we reported that hyposmosis (250 mOsm) increased the amplitude of T-type Ca2+ current and, accordingly, enhanced the Ca2+ response of cultured rat glomerulosa cells to K+. In the present study we found that this enhancement is not influenced by the cytoskeleton-disrupting drugs cytochalasin-D (20 microM) and colchicine (100 microM).

View Article and Find Full Text PDF

The carotid body plays a crucial role in cardiorespiratory regulation. In the present study we investigated the effect of osmotic changes on cytoplasmic calcium concentration ([Ca(2+)](c)) and pH (pH(i)) of isolated chemoreceptor cells of the rat carotid body. In CO(2)/HCO(3)(-)-buffered medium, reduction of osmolality from the control level of 300 mosmol kg(-1) to 250-285 mosmol kg(-1) resulted in a rise in [Ca(2+)](c), as measured with Indo-1, whereas elevation of osmolality to 350 mosmol kg(-1) had no effect.

View Article and Find Full Text PDF