Background: Diabetes mellitus (DM) is a major health concern among children with the widespread adoption of advanced technologies. However, concerns are growing about the transparency, replicability, biasedness, and overall validity of artificial intelligence studies in medicine.
Objective: We aimed to systematically review the reporting quality of machine learning (ML) studies of pediatric DM using the Minimum Information About Clinical Artificial Intelligence Modelling (MI-CLAIM) checklist, a general reporting guideline for medical artificial intelligence studies.
Multiple studies have concluded that the selection of input samples is key for deep metric learning. For triplet networks, the selection of the anchor, positive, and negative pairs is referred to as triplet mining. The selection of the negatives is considered the be the most complicated task, due to a large number of possibilities.
View Article and Find Full Text PDF