Publications by authors named "Gabor Foldes"

Background: The organism-wide effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection are well studied, but little is known about the dynamics of how the infection spreads in time among or within cells due to the scarcity of suitable high-resolution experimental systems. It has been reported that SARS-CoV-2 infection pathways converge at calcium influx and subcellular calcium distribution changes. Imaging combined with a proper staining technique is an effective tool for studying subcellular calcium-related infection and replication mechanisms at such resolutions.

View Article and Find Full Text PDF

Coronary microvascular disease (CMD) and its progression towards major adverse coronary events pose a significant health challenge. Accurate in vitro investigation of CMD requires a robust cell model that faithfully represents the cells within the cardiac microvasculature. Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) offer great potential; however, they are traditionally derived via differentiation protocols that are not readily scalable and are not specified towards the microvasculature.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) hold tremendous potential for cardiovascular disease modeling, drug screening, personalized medicine, and pathophysiology studies. The availability of a robust protocol and functional assay for studying phenotypic behavior of hiPSC-CMs is essential for establishing an in vitro disease model. Many heart diseases manifest due to changes in the mechanical strain of cardiac tissue.

View Article and Find Full Text PDF

The Health and Environmental Sciences Institute Cell Therapy-TRAcking, Circulation & Safety Technical Committee launched an international, multisite study to evaluate the sensitivity and reproducibility of the highly efficient culture (HEC) assay, an assay to detect residual undifferentiated human pluripotent stem cells (hPSCs) in cell therapy products. All facilities detected colonies of human induced pluripotent stem cells (hiPSCs) when five hiPSCs were spiked into 1 million hiPSC-derived cardiomyocytes. Spiking with a trace amount of hiPSCs revealed that repeatability accounts for the majority of reproducibility while the true positive rate was high.

View Article and Find Full Text PDF

This review aims to summarise new approaches in SARS-CoV-2-related research in cardiology. We provide a head-to-head comparison of models, such as animal research and human pluripotent stem cells, to investigate the pathomechanisms of COVID-19 and find an efficient therapy. In vivo methods were useful for studying systemic processes of the disease; however, due to differences in animal and human biology, the clinical translation of the results remains a complex task.

View Article and Find Full Text PDF

Human induced pluripotent stem cell-derived endothelial cells can be candidates for engineering therapeutic vascular grafts. Here, we studied the role of three-dimensional culture on their characteristics and function both and . We found that differentiated hPSC-EC can re-populate decellularized biomatrices; they remain viable, undergo maturation and arterial/venous specification.

View Article and Find Full Text PDF
Article Synopsis
  • In vitro cell and tissue cultures have revolutionized medical research by allowing for the development of highly specific models that mimic human organs, facilitating advancements in regenerative medicine.
  • Specialists in the fields of neurology and cardiology recognize the challenges posed by different cell types, which can hinder progress in regenerative therapies for brain and heart conditions.
  • The review highlights common hurdles in regenerative approaches for both fields, specifically focusing on ischemic diseases like stroke and heart attacks, and suggests methodological solutions to enhance progress and collaboration between regenerative neurology and cardiology.
View Article and Find Full Text PDF

The dextro-transposition of the great arteries (d-TGA) is one of the most common congenital heart diseases. To identify biological processes that could be related to the development of d-TGA, we established induced pluripotent stem cell (iPSC) lines from two patients with d-TGA and from two healthy subjects (as controls) and differentiated them into endothelial cells (iPSC-ECs). iPSC-EC transcriptome profiling and bioinformatics analysis revealed differences in the expression level of genes involved in circulatory system and animal organ development.

View Article and Find Full Text PDF

Aims: Hippo signalling is an evolutionarily conserved pathway that controls organ size by regulating apoptosis, cell proliferation, and stem cell self-renewal. Recently, the pathway has been shown to exert powerful growth regulatory activity in cardiomyocytes. However, the functional role of this stress-related and cell death-related pathway in the human heart and cardiomyocytes is not known.

View Article and Find Full Text PDF

The substantial progress of the human induced pluripotent stem cell (hiPSC) technologies over the last decade has provided us with new opportunities for cardiovascular drug discovery, regenerative medicine, and disease modeling. The combination of hiPSC with 3D culture techniques offers numerous advantages for generating and studying physiological and pathophysiological cardiac models. Cells grown in 3D can overcome many limitations of 2D cell cultures and animal models.

View Article and Find Full Text PDF

Cardiovascular diseases are one of the leading causes of mortality in the western world. Myocardial infarction is among the most prevalent and results in significant cell loss within the myocardium. Similarly, numerous drugs have been identified as having cardiotoxic side effects.

View Article and Find Full Text PDF

Here we describe the generation of induced pluripotent stem cell (iPSC) lines from peripheral blood samples of identical twin sisters with type 2 diabetes mellitus (DM2). Two clonal lines from each patient (HU-DM2-A-1, HU-DM2-A-2 and HU-DM2-B-1, HU-DM2-B-2) were established via Sendai viral reprograming of peripheral blood mononuclear cells, and characterized to confirm pluripotency and genetic integrity. The established iPSC lines can help to investigate DM2 related cellular phenotypes and provide a model system for drug testing.

View Article and Find Full Text PDF

Angiogenesis and vasculogenesis are complex processes by which new blood vessels are formed and expanded. They play a pivotal role not only in physiological development and growth and tissue and organ repair, but also in a range of pathological conditions, from tumour formation to chronic inflammation and atherosclerosis. Understanding the multistep cell-differentiation programmes and identifying the key molecular players of physiological angiogenesis/vasculogenesis are critical to tackle pathological mechanisms.

View Article and Find Full Text PDF

Vascular side effects of standard chemotherapeutic drugs and novel anti-tumor agents complicate treatment cycles, increase non-cancer-related mortality rates, and decrease the quality of life in cancer survivors. Arterial thromboembolic events (ATEE) are associated with most anti-cancer medications. Previous articles have reported a variety of vascular events including ST-segment elevation myocardial infarction as one of the most severe acute arterial attacks.

View Article and Find Full Text PDF

Relaxin-1 (RLN1) has emerged as a possible therapeutic target in myocardial fibrosis due to its anti-fibrotic effects. Previous randomized clinical trials investigated therapeutic role of exogenous relaxin in patients with acute-on-chronic heart failure (HF) and failed to meet clinical endpoints. Here, we aimed to assess endogenous, circulating RLN1 levels in patients with heart failure with reduced ejection fraction (HFrEF) of ischemic origin.

View Article and Find Full Text PDF

Human-induced pluripotent stem cells (hiPSCs) and their differentiated derivatives became a new, promising source for in vitro screening techniques. Cell lines derived from healthy individuals can be applied for drug safety testing, while patient-derived cells provide a platform to model diseases in vitro and can be used as a tool for personalized medicine including specific drug efficacy testing and identification of new pharmacological targets as well as for tailoring pharmacological therapies. Efficient differentiation protocols yielding cardiomyocytes or endothelial cells derived from iPSCs have been developed recently.

View Article and Find Full Text PDF

The formation of new blood vessels is a crucial step in the development of any new tissue both during embryogenesis and models as without sufficient perfusion the tissue will be unable to grow beyond the size where nutrition and oxygenation can be managed by diffusion alone. Endothelial cells are the primary building block of blood vessels and are capable of forming tube like structures independently however they are unable to independently form functional vasculature which is capable of conducting blood flow. This requires support from other structures including supporting perivascular cells and the extracellular matrix.

View Article and Find Full Text PDF

Safety assessment of drug candidates in numerous in vitro and experimental animal models is expensive, time consuming and animal intensive. More thorough toxicity profiling already in the early drug discovery projects using human cell models, which more closely resemble the physiological cell types, would help to decrease drug development costs. In this study we aimed to compare different cardiac and stem cell models for in vitro toxicity testing and to elucidate structure-toxicity relationships of novel compounds targeting the cardiac transcription factor GATA4.

View Article and Find Full Text PDF

Context: Assessment of response to cardiac resynchronization therapy (CRT) is essential.

Objective: To assess the predictive value of CT-apelin together with NT-proBNP in patients undergoing CRT.

Methods: Serum CT-apelin and NT-proBNP were measured by ELISA before, and six months after CRT.

View Article and Find Full Text PDF

This paper summarizes the proceedings of a workshop held at Trinity Hall, Cambridge to discuss comparability and includes additional information and references to related information added subsequently to the workshop. Comparability is the need to demonstrate equivalence of product after a process change; a recent publication states that this 'may be difficult for cell-based medicinal products'. Therefore a well-managed change process is required which needs access to good science and regulatory advice and developers are encouraged to seek help early.

View Article and Find Full Text PDF

Human pluripotent stem cell derivatives show promise as an in vitro platform to study a range of human cardiovascular diseases. A better understanding of the biology of stem cells and their cardiovascular derivatives will help to understand the strengths and limitations of this new model system. G-protein coupled receptors (GPCRs) are key regulators of stem cell maintenance and differentiation and have an important role in cardiovascular cell signaling.

View Article and Find Full Text PDF