Publications by authors named "Gabino Rios"

The involvement of effectors and transcriptional regulators in persimmon fruit maturation has been mostly approached by the literature under postharvest conditions. In order to elucidate the participation of these genes in the on-tree fruit maturation development, we have collected samples from seven persimmon germplasm accessions at different developmental stages until physiological maturation. This study has focused on the expression analysis of 13 genes involved in ethylene biosynthesis and response pathways, as well as the evolution of important agronomical traits such as skin colour, weight, and firmness.

View Article and Find Full Text PDF

Transcriptomic and gene expression analysis have greatly facilitated the identification and characterization of transcriptional regulatory factors and effectors involved in dormancy progression and other physiological processes orchestrated during bud development in peach and other temperate fruit species. Gene expression measurements are most usually based on average values from several or many individual buds. We have performed single-bud gene analysis in flower buds of peach across dormancy release using amplicons from the master regulatory () factors, several jasmonic acid biosynthetic genes, other genes related to flowering development, cell growth resumption, and abiotic stress tolerance.

View Article and Find Full Text PDF

Background: Bud dormancy is a phenological adaptation of temperate perennials that ensures survival under winter temperature conditions by ceasing growth and increasing cold hardiness. SHORT VEGETATIVE PHASE (SVP)-like factors, and particularly a subset of them named DORMANCY-ASSOCIATED MADS-BOX (DAM), are master regulators of bud dormancy in perennials, prominently Rosaceae crops widely adapted to varying environmental conditions.

Results: SVP-like proteins from recently sequenced Rosaceae genomes were identified and characterized using sequence, phylogenetic and synteny analysis tools.

View Article and Find Full Text PDF

DORMANCY-ASSOCIATED MADS-BOX (DAM) genes have recently emerged as key potential regulators of the dormancy cycle and climate adaptation in perennial species. Particularly, PpeDAM6 has been proposed to act as a major repressor of bud dormancy release and bud break in peach (Prunus persica). PpeDAM6 expression is downregulated concomitantly with the perception of a given genotype-dependent accumulation of winter chilling time, and the coincident enrichment in H3K27me3 chromatin modification at a specific genomic region.

View Article and Find Full Text PDF

Bud dormancy in temperate perennials ensures the survival of growing meristems under the harsh environmental conditions of autumn and winter, and facilitates an optimal growth and development resumption in the spring. Although the molecular pathways controlling the dormancy process are still unclear, genes () have emerged as key regulators of the dormancy cycle in different species. In the present study, we have characterized the orthologs of genes in European plum ( L.

View Article and Find Full Text PDF

MBW protein complexes containing MYB, bHLH and WD40 repeat factors are known transcriptional regulators of secondary metabolites production such as proanthocyanidins and anthocyanins, and developmental processes such as trichome formation in many plant species. DkMYB2 and DkMYB4 (MYB-type), DkMYC1 (bHLH-type) and DkWDR1 (WD40-type) factors have been proposed by different authors to take part of persimmon MBW complexes for proanthocyanidin accumulation in immature fruit, leading to its characteristic astringent flavour with important agronomical and ecological effects. We have confirmed the nuclear localization of these proteins and their mutual physical interaction by bimolecular fluorescence complementation analysis.

View Article and Find Full Text PDF

In temperate and boreal regions, perennial trees arrest cell division in their meristematic tissues during winter dormancy until environmental conditions become appropriate for their renewed growth. Release from the dormant state requires exposure to a period of chilling temperatures similar to the vernalization required for flowering in . Over the past decade, genomic DNA (gDNA) methylation and transcriptome studies have revealed signatures of chromatin regulation during active growth and winter dormancy.

View Article and Find Full Text PDF

During autumn perennial trees cease growth and form structures called buds in order to protect meristems from the unfavorable environmental conditions, including low temperature and desiccation. In addition to increased tolerance to these abiotic stresses, reproductive buds modulate developmental programs leading to dormancy induction to avoid premature growth resumption, and flowering pathways. Stress tolerance, dormancy, and flowering processes are thus physically and temporarily restricted to a bud, and consequently forced to interact at the regulatory level.

View Article and Find Full Text PDF

PpeS6PDH gene is postulated to mediate sorbitol synthesis in flower buds of peach concomitantly with specific chromatin modifications. Perennial plants have evolved an adaptive mechanism involving protection of meristems within specialized structures named buds in order to survive low temperatures and water deprivation during winter. A seasonal period of dormancy further improves tolerance of buds to environmental stresses through specific mechanisms poorly known at the molecular level.

View Article and Find Full Text PDF

We have identified a gene (PpSAP1) of Prunus persica coding for a stress-associated protein (SAP) containing Zn-finger domains A20 and AN1. SAPs have been described as regulators of the abiotic stress response in plant species, emerging as potential candidates for improvement of stress tolerance in plants. PpSAP1 was highly expressed in leaves and dormant buds, being down-regulated before bud dormancy release.

View Article and Find Full Text PDF

During grape ripening, numerous transcriptional and metabolic changes are required in order to obtain colored, sweet, and flavored berries. There is evidence that ethylene, together with other signals, plays an important role in triggering the onset of ripening. Here, we report the functional characterization of a berry-specific Ethylene Responsive Factor (ERF), , which is induced just before véraison and peaks at ripening.

View Article and Find Full Text PDF

The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species.

View Article and Find Full Text PDF

Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana and cereals. In both cases, a certain period of chilling is required for accomplishing the reproductive phase, and several transcription factors with the MADS-box domain perform a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED MADS-box (DAM)-related genes has been found to be up-regulated in dormant buds of numerous plant species, such as poplar, raspberry, leafy spurge, blackcurrant, Japanese apricot, and peach.

View Article and Find Full Text PDF

Background: The reproductive phenology of perennial plants in temperate climates is largely conditioned by the duration of bud dormancy, and fruit developmental processes. Bud dormancy release and bud break depends on the perception of cumulative chilling and heat during the bud development. The objective of this work was to identify new quantitative trait loci (QTLs) associated to temperature requirements for bud dormancy release and flowering and to fruit harvest date, in a segregating population of peach.

View Article and Find Full Text PDF

Background: The outer cell wall of the pollen grain (exine) is an extremely resistant structure containing sporopollenin, a mixed polymer made up of fatty acids and phenolic compounds. The synthesis of sporopollenin in the tapetal cells and its proper deposition on the pollen surface are essential for the development of viable pollen. The beginning of microsporogenesis and pollen maturation in perennial plants from temperate climates, such as peach, is conditioned by the duration of flower bud dormancy.

View Article and Find Full Text PDF

Background: Monosporascus cannonballus is the main causal agent of melon vine decline disease. Several studies have been carried out mainly focused on the study of the penetration of this pathogen into melon roots, the evaluation of symptoms severity on infected roots, and screening assays for breeding programs. However, a detailed molecular view on the early interaction between M.

View Article and Find Full Text PDF

We have identified QDR2 in a screening for genes able to confer tolerance to sodium and/or lithium stress upon overexpression. Qdr2 is a multidrug transporter of the major facilitator superfamily, originally described for its ability to transport the antimalarial drug quinidine and the herbicide barban. To identify its physiological substrate, we have screened for phenotypes dependent on QDR2 and found that Qdr2 is able to transport monovalent and divalent cations with poor selectivity, as shown by growth tests and the determination of internal cation content.

View Article and Find Full Text PDF

Reproductive meristems and embryos display dormancy mechanisms in specialized structures named respectively buds and seeds that arrest the growth of perennial plants until environmental conditions are optimal for survival. Dormancy shows common physiological features in buds and seeds. A genotype-specific period of chilling is usually required to release dormancy by molecular mechanisms that are still poorly understood.

View Article and Find Full Text PDF

• Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS-box transcription factors encoded by DORMANCY ASSOCIATED MADS-box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be identified. In addition, the regulation of DAM gene expression is not well known at the molecular level.

View Article and Find Full Text PDF

Background: External ripening in Citrus fruits is morphologically characterized by a colour shift from green to orange due to the degradation of chlorophylls and the accumulation of carotenoid pigments. Although numerous genes coding for enzymes involved in such biochemical pathways have been identified, the molecular control of this process has been scarcely studied. In this work we used the Citrus clementina mutants 39B3 and 39E7, showing delayed colour break, to isolate genes potentially related to the regulation of peel ripening and its physiological or biochemical effects.

View Article and Find Full Text PDF

To better understand the molecular and physiological mechanisms underlying maintenance and release of seasonal bud dormancy in perennial trees, we identified differentially expressed genes during dormancy progression in reproductive buds from peach (Prunus persica [L.] Batsch) by suppression subtractive hybridization (SSH) and microarray hybridization. Four SSH libraries were constructed, which were respectively enriched in cDNA highly expressed in dormant buds (named DR), in dormancy-released buds (RD) and in the cultivars with different chilling requirement, 'Zincal 5' (ZS) and 'Springlady' (SZ), sampled after dormancy release.

View Article and Find Full Text PDF

Background: Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions.

View Article and Find Full Text PDF