Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers worldwide, primarily due to its robust desmoplastic stroma and immunosuppressive tumor microenvironment (TME), which facilitate tumor progression and metastasis. In addition, fibrous tissue leads to sparse vasculature, high interstitial fluid pressure, and hypoxia, thereby hindering effective systemic drug delivery and immune cell infiltration. Thus, remodeling the TME to enhance tumor perfusion, increase drug retention, and reverse immunosuppression has become a key therapeutic strategy.
View Article and Find Full Text PDFThis study compares the performance and output of an electrochemical phospholipid membrane platform against respective in vitro cell-based toxicity testing methods using three toxicants of different biological action (chlorpromazine (CPZ), colchicine (COL) and methyl methanesulphonate (MMS)). Human cell lines from seven different tissues (lung, liver, kidney, placenta, intestine, immune system) were used to validate this physicochemical testing system. For the cell-based systems, the effective concentration at 50 % cell death (EC) values are calculated.
View Article and Find Full Text PDFFundamental studies investigating the biological effects induced by nanoparticles (NPs) explicitly require the correct assessment of their intracellular concentration. Ultrasensitive atomic absorption spectroscopy (AAS) is perceived as one of the gold standard methods for quantifying internalized NPs. Besides its limitation to metal-based NPs though, AAS also requires specific infrastructure and tedious sample preparation and handling, making it time-consuming and cost-intensive.
View Article and Find Full Text PDFExosomes are considered to be a rich source of biomarkers, hence in this article we examine the best procedure for their isolation. We examine several isolation procedures, exosome storage conditions and other conditions affecting exosome production by prostate cell lines. We selected four different commercially available kits based on different principles to achieve exosome isolation, the best being magnetic-based.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2022
Mutat Res Genet Toxicol Environ Mutagen
February 2022
5-Fluorouracil (5-FU) is an essential chemotherapeutic drug for colorectal cancer (CRC) treatment. However, the frequent development of drug resistance has dramatically affected its clinical use. Therefore, novel treatment strategies are critical to improving patient outcomes.
View Article and Find Full Text PDFAcquired drug resistance and metastasis in breast cancer (BC) are coupled with epigenetic deregulation of gene expression. Epigenetic drugs, aiming to reverse these aberrant transcriptional patterns and sensitize cancer cells to other therapies, provide a new treatment strategy for drug-resistant tumors. Here we investigated the ability of DNA methyltransferase (DNMT) inhibitor decitabine (DAC) to increase the sensitivity of BC cells to anthracycline antibiotic doxorubicin (DOX).
View Article and Find Full Text PDFThe unique physicochemical properties make inorganic nanoparticles (INPs) an exciting tool in diagnosis and disease management. However, as INPs are relatively difficult to fully degrade and excrete, their unintended accumulation in the tissue might result in adverse health effects. Herein, we provide a methylome-transcriptome framework for chronic effects of INPs, commonly used in biomedical applications, in human kidney TH-1 cells.
View Article and Find Full Text PDFDespite the obvious advantages of gold nanoparticles for biomedical applications, controversial and incomplete toxicological data hamper their widespread use. Here, we present the results from an in vivo toxicity study using gold nanoparticles coated with polyethylene glycol (PEG-AuNPs). The pharmacokinetics and biodistribution of PEG-AuNPs were examined in the rat's liver, lung, spleen, and kidney after a single i.
View Article and Find Full Text PDFThe efficient entry of nanotechnology-based pharmaceuticals into target cells is highly desired to reach high therapeutic efficiency while minimizing the side effects. Despite intensive research, the impact of the surface coating on the mechanism of nanoparticle uptake is not sufficiently understood yet. Herein, we present a mechanistic study of cellular internalization pathways of two magnetic iron oxide nanoparticles (MNPs) differing in surface chemistry into A549 cells.
View Article and Find Full Text PDFMicrofluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal-free risk assessment of new chemicals and drugs. Microfluidic cell-based devices allow high-throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal-free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH).
View Article and Find Full Text PDFEpigenetic dysregulation has been recognized as a critical factor contributing to the development of resistance against standard chemotherapy and to breast cancer progression via epithelial-to-mesenchymal transition. Although the efficacy of the first-generation epigenetic drugs (epi-drugs) in solid tumor management has been disappointing, there is an increasing body of evidence showing that epigenome modulation, in synergy with other therapeutic approaches, could play an important role in cancer treatment, reversing acquired therapy resistance. However, the epigenetic therapy of solid malignancies is not straightforward.
View Article and Find Full Text PDFThe comet assay is a widely used test for the detection of DNA damage and repair activity. However, there are interlaboratory differences in reported levels of baseline and induced damage in the same experimental systems. These differences may be attributed to protocol differences, although it is difficult to identify the relevant conditions because detailed comet assay procedures are not always published.
View Article and Find Full Text PDFDrug-induced nephrotoxicity is a frequent adverse event and a dose-limiting factor in patient treatment and is a leading cause of prospective drug attrition during pharmaceutical development. Despite the obvious benefits of nanotherapeutics in healthcare strategies, the clearance of imaging agents and nanocarriers from the body following their therapeutic or diagnostic application generates concerns about their safety for human health. Considering the potency of nanoparticles and their massive utilization in biomedicine the impact of magnetic nanoparticles (MNPs) on cells forming the filtration apparatus of the kidney was studied.
View Article and Find Full Text PDF7H-Dibenzo[c,g]carbazole (DBC), a local and systemic carcinogen in animal studies, is a common environmental pollutant. It generally co-occurs in a variety of organic complex mixtures derived from incomplete combustion of organic matter. Despite high lipophilicity, DBC is more water-soluble and faster metabolized than the homocyclic aromatics.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
September 2019
Biomonitoring of the effects of environmental and occupational exposure relevant chemical or physical factors on central nervous system is difficult due to the problems with sampling of biological material. Thus, surrogate systems allowing for the estimation of effect intensity are necessary to evaluate a potential risk of exposure. Cancerous neural cells in culture seem to be a reliable trustworthy alternative to ex vivo primary cells culture, where brain tissue is hardly available.
View Article and Find Full Text PDFDrug-induced kidney injury is one of the most significant adverse events and dose limiting factor in chemotherapy as well a major cause of prospective drug attrition during pharmaceutical development. Moreover, kidney injury can also occur as a consequence of exposures to environmental xenobiotics such as heavy metals, fungal toxins and nanomaterials. The lack of adequate in vitro human kidney models that mimic more realistically the in vivo conditions and the absence of suitable and robust, cost-effective and predictive cell-based in vitro assays contribute to an underestimation of the kidney toxic potential of new drugs and xenobiotics.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
September 2019
Progressive expansion of nanomaterials in our everyday life raises concerns about their safety for human health. Although kidneys are the primary organs of xenobiotic elimination, little attention has been paid to the kidneys in terms of nanotoxicological studies up to now. Here we investigate the cytotoxic and genotoxic potential of four solid-core uncoated inorganic nanoparticles (TiONPs, SiONPs, FeONPs and AuNPs) using the human renal proximal tubule epithelial TH1 cells.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
July 2019
Exposure to pesticides leads to complex, long-lasting adverse effects on human health, and poses a substantial risk to those living in areas devoted to agriculture. Children are particularly vulnerable to the pesticide exposure, due to the developmental, dietary and physiological factors. Small body mass and typical exploratory behavior result in increased risk of intoxication.
View Article and Find Full Text PDFNanomedicine is an emerging field that combines knowledge of nanotechnology and material science with pharmaceutical and biomedical sciences, aiming to develop nanodrugs with increased efficacy and safety. Compared to conventional therapeutics, nanodrugs manifest higher stability and circulation time, reduced toxicity and improved targeted delivery. Despite the obvious benefit, the accumulation of imaging agents and nanocarriers in the body following their therapeutic or diagnostic application generates concerns about their safety for human health.
View Article and Find Full Text PDFComprehensive characterization of nanoparticles associated with investigation of their cellular uptake creates the basis on which fundamental in vitro and in vivo studies can be built. In this work, a complex analysis of various surface-modified magnetite nanoparticles in biologically relevant environment is reported and the promotion of incorrect characterization into the results obtained from model biological experiments leading to false conclusions is demonstrated. Via a bottom-up approach from particle characterization by DLS towards interpretation of biological data based on cellular uptake, this work draws attention to the systematic propagation of errors stemming from inaccurate determination of input parameters for DLS, improper selection of particle size distribution, inadequate sampling, unknown colloidal behavior and the omission of fraction of particles complying with the internalization threshold.
View Article and Find Full Text PDFNowadays engineered nanomaterials (ENMs) are increasingly used in a wide range of commercial products and biomedical applications. Despite this, the knowledge of human potential health risk as well as comprehensive biological and toxicological information is still limited. We have investigated the capacity of two frequently used metallic ENMs, nanosilver and magnetite nanoparticles (MNPs), to induce thymidine kinase (Tk ) mutations in L5178Y mouse lymphoma cells and transformed foci in Bhas 42 cells.
View Article and Find Full Text PDFIron oxide nanoparticles are one of the most promising types of nanoparticles for biomedical applications, primarily in the context of nanomedicine-based diagnostics and therapy; hence, great attention should be paid to their bio-safety. Here, we investigate the ability of surface-modified magnetite nanoparticles (MNPs) to produce chromosome damage in human alveolar A549 cells. Compared to control cells, all the applied MNPs increased the level of micronuclei moderately but did not cause structural chromosomal aberrations in exposed cells.
View Article and Find Full Text PDF