Sequences and three-dimensional structures of the four vertebrate arrestins are very similar, yet in sharp contrast to other subtypes, arrestin-1 demonstrates exquisite selectivity for the active phosphorylated form of its cognate receptor, rhodopsin. The N-terminus participates in receptor binding and serves as the anchor of the C-terminus, the release of which facilitates arrestin transition into a receptor-binding state. We tested the effects of substitutions of fourteen residues in the N-terminus of arrestin-1 on the binding to phosphorylated and unphosphorylated light-activated rhodopsin of wild-type protein and its enhanced mutant with C-terminal deletion that demonstrates higher binding to both functional forms of rhodopsin.
View Article and Find Full Text PDFThe tubulointerstitial compartment comprises most of the kidney parenchyma. Inflammation in this compartment (tubulointerstitial nephritis-TIN) can be acute and resolves if the offending factor is withdrawn or may enter a chronic process leading to irreversible kidney damage. Etiologic factors differ, including different exposures, infections, and autoimmune and genetic tendency, and the initial damage can be acute, recurrent, or permanent, determining whether the acute inflammatory process will lead to complete healing or to a chronic course of inflammation leading to fibrosis.
View Article and Find Full Text PDFIn rodents with unilateral ablation of neurons supplying dopamine to the striatum, chronic treatment with the dopamine precursor L-DOPA induces a progressive increase of behavioral responses, a process known as behavioral sensitization. This sensitization is blunted in arrestin-3 knockout mice. Using virus-mediated gene delivery to the dopamine-depleted striatum of these mice, we find that the restoration of arrestin-3 fully rescues behavioral sensitization, whereas its mutant defective in c-Jun N-terminal kinase (JNK) activation does not.
View Article and Find Full Text PDFBiological activity of free arrestins is often overlooked. Based on available data, we compare arrestin-mediated signaling that requires and does not require binding to G-protein-coupled receptors (GPCRs). Receptor-bound arrestins activate ERK1/2, Src, and focal adhesion kinase (FAK).
View Article and Find Full Text PDFPathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes.
View Article and Find Full Text PDFArrestins were discovered for their role in homologous desensitization of G-protein-coupled receptors (GPCRs). Later non-visual arrestins were shown to regulate several signaling pathways. Some of these pathways require arrestin binding to GPCRs, the regulation of others is receptor independent.
View Article and Find Full Text PDFIn rodents with unilateral ablation of the substantia nigra neurons supplying dopamine to the striatum, chronic treatment with the dopamine precursor L-DOPA or dopamine agonists induces a progressive increase of behavioral responses, a process known as behavioral sensitization. The sensitization is blunted in arrestin-3 knockout mice. Using virus-mediated gene delivery to the dopamine-depleted striatum of arrestin-3 knockout mice, we found that the restoration of arrestin-3 fully rescued behavioral sensitization, whereas its mutant defective in JNK activation did not.
View Article and Find Full Text PDFCystic fibrosis (CF) is a multiorgan disease, caused by autosomal recessive (AR) mutations in the cystic fibrosis transmembrane regulator (CFTR) acting primarily as a chloride channel. CF is most commonly diagnosed in Caucasian populations. Common clinical presentations in pediatric patients include chronic cough, respiratory tract infections such as pneumonia, digestive symptoms, and stunted growth, and malnutrition due to gastrointestinal malabsorption and pancreatic insufficiency.
View Article and Find Full Text PDFWe study structural and morphological transformations caused by multipulse femtosecond-laser exposure of Bridgman-grown ϵ-phase GaSe crystals, a van der Waals semiconductor promising for nonlinear optics and optoelectronics. We unveil, for the first time, the laser-driven self-organization regimes in GaSe allowing the formation of regular laser-induced periodic surface structures (LIPSSs) that originate from interference of the incident radiation and interface surface plasmon waves. LIPSSs formation causes transformation of the near-surface layer to amorphous GaSe at negligible oxidation levels, evidenced from comprehensive structural characterization.
View Article and Find Full Text PDFOnly 1 out of 4 mammalian arrestin subtypes, arrestin-3, facilitates the activation of c-Jun N-terminal kinase (JNK) family kinases. Here, we describe two different sets of protocols used for elucidating the mechanisms involved. One is based on reconstitution of signaling modules from the following purified proteins: arrestin-3, MKK4, MKK7, JNK1, JNK2, and JNK3.
View Article and Find Full Text PDFArrestins bind active phosphorylated G protein-coupled receptors (GPCRs). Among the four mammalian subtypes, only arrestin-3 facilitates the activation of JNK3 in cells. In available structures, Lys-295 in the lariat loop of arrestin-3 and its homologue Lys-294 in arrestin-2 directly interact with the activator-attached phosphates.
View Article and Find Full Text PDFArrestins were first discovered as proteins that selectively bind active phosphorylated GPCRs and suppress (arrest) their G protein-mediated signaling. Nonvisual arrestins are also recognized as signaling proteins regulating a variety of cellular pathways. Arrestins are highly flexible; they can assume many different conformations.
View Article and Find Full Text PDFArrestin-1, or visual arrestin, exhibits an exquisite selectivity for light-activated phosphorylated rhodopsin (P-Rh*) over its other functional forms. That selectivity is believed to be mediated by two well-established structural elements in the arrestin-1 molecule, the activation sensor detecting the active conformation of rhodopsin and the phosphorylation sensor responsive to the rhodopsin phosphorylation, which only active phosphorylated rhodopsin can engage simultaneously. However, in the crystal structure of the arrestin-1-rhodopsin complex there are arrestin-1 residues located close to rhodopsin, which do not belong to either sensor.
View Article and Find Full Text PDFArrestins bind active phosphorylated G protein-coupled receptors (GPCRs). Among the four mammalian subtypes, only arrestin-3 facilitates the activation of JNK3 in cells. In available structures, Lys-295 in the lariat loop of arrestin-3 and its homologue Lys-294 in arrestin-2 directly interact with the activator-attached phosphates.
View Article and Find Full Text PDFHere, we show that direct femtosecond laser nanostructuring of monocrystalline Si wafers in aqueous solutions containing noble-metal precursors (such as palladium dichloride, potassium hexachloroplatinate, and silver nitrate) allows for the creation of nanogratings decorated with mono- (Pd, Pt, and Ag) and bimetallic (Pd-Pt) nanoparticles (NPs). Multi-pulse femtosecond-laser exposure was found to drive periodically modulated ablation of the Si surface, while simultaneous thermal-induced reduction of the metal-containing acids and salts causes local surface morphology decoration with functional noble metal NPs. The orientation of the formed Si nanogratings with their nano-trenches decorated with noble-metal NPs can be controlled by the polarization direction of the incident laser beam, which was justified, for both linearly polarized Gaussian and radially (azimuthally) polarized vector beams.
View Article and Find Full Text PDFThe two -arrestins, -arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both -arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms.
View Article and Find Full Text PDFcAMP signaling in the nucleus leads to the expression of immediate early genes in neurons and learning and memory. In this issue of , Martinez . found that activation of the β-adrenergic receptor enhances nuclear cAMP signaling that supports learning and memory in mice by removing the phosphodiesterase PDE4D5 from the nucleus through arrestin3 bound to the internalized receptor.
View Article and Find Full Text PDFAtypical hemolytic uremic syndrome is a thrombotic microangiopathy characterized by hemolysis, thrombocytopenia, and acute kidney injury, usually caused by alternative complement system overactivation due to pathogenic genetic variants or antibodies to components or regulatory factors in this pathway. Previously, a lack of effective treatment for this condition was associated with mortality, end-stage kidney disease, and the risk of disease recurrence after kidney transplantation. Plasma therapy has been used for atypical hemolytic uremic syndrome treatment with inconsistent results.
View Article and Find Full Text PDFArrestins preferentially bind active phosphorylated G protein-coupled receptors (GPCRs). The middle loop, highly conserved in all arrestin subtypes, is localized in the central crest on the GPCR-binding side. Upon receptor binding, it directly interacts with bound GPCR and demonstrates the largest movement of any arrestin element in the structures of the complexes.
View Article and Find Full Text PDFArtificial Intelligence (AI) for health has a great potential; it has already proven to be successful in enhancing patient outcomes, facilitating professional work and benefiting administration. However, AI presents challenges related to health equity defined as an opportunity for people to reach their fullest health potential. This article discusses the opportunities and challenges that AI presents in health and examines ways in which inequities related to AI can be mitigated.
View Article and Find Full Text PDFBackground: Idiopathic infantile hypercalcemia (IIH) etiologies include pathogenic variants in CYP24A1, leading to increased 1,25(OH) D, hypercalciuria and suppressed parathyroid hormone (PTH), and in SLC34A1 and SLC34A3, leading to the same metabolic profile via increased phosphaturia. IIH has not been previously described in CKD due to kidney hypodysplasia (KHD).
Methods: Retrospective study of children with bilateral KHD and simultaneously tested PTH and 1,25(OH)D, followed in a tertiary care center between 2015 and 2021.