Publications by authors named "GUEZENNEC J"

Recently, polysaccharide-based hydrogels crosslinked with the trivalent iron cation have attracted interest due to their remarkable properties that include high mechanical stability, stimuli-responsiveness, and enhanced absorptivity. In this study, a Fe crosslinked hydrogel was prepared using the biocompatible extracellular polysaccharide (EPS) secreted by the marine bacterium Alteromonas macleodii Mo169. Hydrogels with mechanical strengths (G') ranging from 0.

View Article and Find Full Text PDF

Biological cryopreservation often involves using a cryoprotective agent (CPA) to mitigate lethal physical stressors cells endure during freezing and thawing, but effective CPA concentrations are cytotoxic. Hence, natural polysaccharides have been studied as biocompatible alternatives. Here, a subset of 26 natural polysaccharides of various chemical composition was probed for their potential in enhancing the metabolic post-thaw viability (PTV) of cryopreserved Vero cells.

View Article and Find Full Text PDF

In this study, the novel exopolysaccharide (EPS) produced by the marine bacterium Mo 169 was used as a stabilizer and capping agent in the preparation of selenium nanoparticles (SeNPs). The synthesized nanoparticles were well dispersed and spherical with an average particle size of 32 nm. The cytotoxicity of the EPS and the EPS/SeNPs bio-nanocomposite was investigated on human keratinocyte (HaCaT) and fibroblast (CCD-1079Sk) cell lines.

View Article and Find Full Text PDF

Rheology modifiers are essential additives in numerous products in a variety of industries. Due to environmental awareness, consumer-oriented industries are interested in novel natural rheological agents that can replace synthetic chemicals. In this study, the chemical composition and rheological properties of a novel exopolysaccharide (EPS) produced by Alteromonas macleodii Mo 169 were investigated.

View Article and Find Full Text PDF

This work assessed the film-forming capacity of exopolysaccharides (EPS) produced by six strains recently isolated from different marine environments in French Polynesia atolls. The films were transparent and resulted in small colour alterations when applied over a coloured surface (Δ below 12.6 in the five different colours tested).

View Article and Find Full Text PDF

Marine environments comprise almost three quarters of Earth's surface, representing the largest ecosystem of our planet. The vast ecological and metabolic diversity found in marine microorganisms suggest that these marine resources have a huge potential as sources of novel commercially appealing biomolecules, such as exopolysaccharides (EPS). Six strains from different marine environments in French Polynesia atolls were selected for EPS extraction.

View Article and Find Full Text PDF

MO245 exopolysaccharide (EPS) was produced in laboratory conditions from Vibrio genus microorganism isolated from bacterial mats found in Moorea Island. Its structure consists of a linear tetrasaccharide repeating unit →4)-β-D-GlcpA-(1→4)-α-D-GalpNAc-(1→3)-β-D-GlcpNAc-(1→4)-β-D-GlcpA-(1→ containing covalently-linked 5% of glucose, galactose, and rhamnose, determined by methylation analyses and NMR spectroscopy. The molecular weight, radius of gyration (R) and intrinsic viscosity, [η], determined by gel permeation chromatography with light scattering and viscosity detection, were 513 ± 4 kDa (PDI, 1.

View Article and Find Full Text PDF

Background: The incidence of hypoxaemia related to airway management is still a matter of concern. Our aim was to determine the factors that contribute to hypoxaemia during induction of anaesthesia after a standardised preoxygenation procedure.

Methods: The study was a multicentre and prospective observational trial.

View Article and Find Full Text PDF

Bacteria employ adaptive mechanisms of mercury (Hg) tolerance to survive in environments containing elevated Hg concentrations. The potential of extracellular polysaccharides (EPS) production by bacteria as a mechanism of Hg tolerance has not been previously investigated. The objectives of this study were to determine if bacterial EPS sorb Hg, and if so does sorption provide protection against Hg toxicity.

View Article and Find Full Text PDF

Cultured pearls are the product of grafting and rearing of Pinctada margaritifera pearl oysters in their natural environment. Nucleus rejections and oyster mortality appear to result from bacterial infections or from an inappropriate grafting practice. To reduce the impact of bacterial infections, synthetic antibiotics have been applied during the grafting practice.

View Article and Find Full Text PDF

Background: A rehabilitation program, a multimodal strategy favoring rapid postoperative return to autonomy, has rarely been undertaken after thoracic surgery compared to colectomy. The primary outcome of this fast-track program was the length of postoperative stay. Secondary outcomes concerned the feasibility of this strategy, the incidence of postoperative complications and 3-month postoperative mortality.

View Article and Find Full Text PDF

The complement system is involved in the defence against bacterial infection, or in the elimination of tumour cells. However, disturbances in this system contributes to the pathogenesis of various inflammatory diseases. The efficiency of therapeutic anti-tumour antibodies is enhanced when the complement system is stimulated.

View Article and Find Full Text PDF

Unlabelled: Marine bacteria are a rich source of bioactive metabolites. However, the microbial diversity of marine ecosystem still needs to be explored. The aim of this study was to isolate and characterize bacteria with antimicrobial activities from various marine coastal environment of New Caledonia.

View Article and Find Full Text PDF

A previously reported bacterial bioemulsifier, here termed microbactan, was further analyzed to characterize its lipid component, molecular weight, ionic character and toxicity, along with its bioemulsifying potential for hydrophobic substrates at a range of temperatures, salinities and pH values. Analyses showed that microbactan is a high molecular weight (700 kDa), non-ionic molecule. Gas chromatography of the lipid fraction revealed the presence of palmitic, stearic, and oleic acids; thus microbactan may be considered a glycolipoprotein.

View Article and Find Full Text PDF

Metal remediation was studied by the sorption of analytical grade copper Cu(II) and silver Ag(I) by four exopolysaccharides (EPS) produced by marine bacteria. Colorimetric analysis showed that these EPS were composed of neutral sugars, uronic acids (>20 %), acetate, and sulfate (29 %). Metal sorption experiments were conducted in batch process.

View Article and Find Full Text PDF

Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture.

View Article and Find Full Text PDF

Aims: Exopolysaccharides (EPS) are industrially valuable molecules with numerous useful properties. This study describes the techniques used for the identification of a novel Vibrio bacterium and preliminary characterization of its EPS.

Methods And Results: Bioprospection in marine intertidal areas of New Caledonia followed by screening for EPS producing brought to selection of the isolate NC470.

View Article and Find Full Text PDF

The biosynthesis of medium chain length poly(3-hydroxyalkanoates) mcl PHAs by Pseudomonas guezennei using glucose, sodium octanoate, and 10-undecenoic acid as sole or mixed carbon sources was investigated. Chemical composition of polyesters was analyzed by GCMS and NMR. The copolyester produced by P.

View Article and Find Full Text PDF

A new gas chromatography-mass spectrometry (GC-MS) method for the localization of double bond in monounsaturated 3-hydroxyalkenoic acids monomers has been developed. A three steps derivation assay was used including a methanolysis, then acetylation and dimethyldisulfide (DMDS) addition to alkene groups. Electron impact GC-MS analysis of such derivatives offers characteristic fragments allowing the unambiguous determination of double bond position in side chain.

View Article and Find Full Text PDF

A new bacterium, designated as strain TE9 was isolated from a microbial mat in French Polynesia and was studied for its ability to synthesize medium chain length poly-beta-hydroxyalkanoates (mcl PHAs) during cultivation on cosmetics co-products. The composition of PHAs was analysed by coupled gas chromatography mass spectroscopy (GC/MS), nuclear magnetic resonance (NMR) and Fourier Transform InfraRed (FTIR) spectroscopy. PHAs were composed of C6-C14 3-hydroxyacids monomers, with a predominance of 3-hydroxyoctanoate (3HO), 3-hydroxydecanoate (3HD) and 3-hydroxydodecanoate (3HDD).

View Article and Find Full Text PDF

A bacterium isolated from microbial mats located on a polynesian atoll produced a high molecular weight (3,000 kDa) and highly sulphated exopolysaccharide. Previous studies showed that the chemical structure of this EPS consisted of neutral sugars, uronic acids, and high proportions of acetate and sulphate groups. The copper- and iron-binding ability of the purified pre-treated native EPS was investigated.

View Article and Find Full Text PDF

Many biological properties of algae have been found to have useful applications in human health, particularly in the fields of oncology and immunology. Floridoside, extracted from the red alga Mastocarpus stellatus, has a structure similar to the xenoantigen Gal alpha 1-3 Gal. This xenoantigen has been described to induce a high immune response in human xenografts and is mediated by natural anti-gal antibodies that activate the classical complement pathway.

View Article and Find Full Text PDF

Pseudomonas guezennei biovar. tikehau was isolated from a microbial mat on the atoll of Tikehau in French Polynesia, and is able to synthesize medium chain length poly-beta-hydroxyalkanaote copolymers when grown on coprah oil. A two-step cultivation process was used and the biosynthesis of PHAs was followed along 52h by regular culture sampling.

View Article and Find Full Text PDF

Aims: The objective of the present work was to describe a new deep-sea, aerobic, mesophilic and heterotrophic bacterium, referenced as strain AT1214, able to produce polyhydroxyalkanoates (PHAs) under laboratory conditions. This bacterium was isolated from a shrimp collected nearby a hydrothermal vent located on the Mid-Atlantic Ridge.

Methods And Results: This micro-organism, on the basis of the phenotypical features and genotypic investigations, can be clearly assigned to the Halomonas genus and the name of Halomonas profundus is proposed.

View Article and Find Full Text PDF

Aims: The aim of the present study was to describe an aerobic, mesophilic and heterotrophic bacterium, designated RA26, able to produce a medium-chain-length polyhydroxyalkanoate (PHA). It was isolated from a French Polynesian bacterial mat located in the atoll of Rangiroa.

Methods And Results: This micro-organism, on the basis of the phenotypical features and genotypic investigations can be clearly assigned to the Pseudomonas genus and the name of Pseudomonas guezennei is proposed.

View Article and Find Full Text PDF