Publications by authors named "GRIEBENOW N"

Inhibition of intracellular nicotinamide phosphoribosyltransferase (NAMPT) represents a new mode of action for cancer-targeting antibody-drug conjugates (ADCs) with activity also in slowly proliferating cells. To extend the repertoire of available effector chemistries, we have developed a novel structural class of NAMPT inhibitors as ADC payloads. A structure-activity relationship-driven approach supported by protein structural information was pursued to identify a suitable attachment point for the linker to connect the NAMPT inhibitor with the antibody.

View Article and Find Full Text PDF

Herein we describe the discovery, mode of action, and preclinical characterization of the soluble guanylate cyclase (sGC) activator runcaciguat. The sGC enzyme, via the formation of cyclic guanosine monophoshphate, is a key regulator of body and tissue homeostasis. sGC activators with their unique mode of action are activating the oxidized and heme-free and therefore NO-unresponsive form of sGC, which is formed under oxidative stress.

View Article and Find Full Text PDF

The number of cytotoxic payload classes successfully employed in antibody-drug conjugates (ADCs) is still rather limited. The identification of ADC payloads with a novel mode of action will increase therapeutic options and potentially increase the therapeutic window. Herein, we describe the utilization of kinesin spindle protein inhibitors (KSPi) as a novel payload class providing highly potent ADCs against different targets, for instance HER-2 or TWEAKR/Fn14.

View Article and Find Full Text PDF

The first-in-class soluble guanylate cyclase (sGC) stimulator riociguat was recently introduced as a novel treatment option for pulmonary hypertension. Despite its outstanding pharmacological profile, application of riociguat in other cardiovascular indications is limited by its short half-life, necessitating a three times daily dosing regimen. In our efforts to further optimize the compound class, we have uncovered interesting structure-activity relationships and were able to decrease oxidative metabolism significantly.

View Article and Find Full Text PDF

Herein, we describe an extension of our previously reported photomediated disulfide rebridging methodology to the conjugation of peptides and proteins. The methodology proved to be reproducible with various alkynes and different peptides. This study includes the first rebridging of the disulfide bond of a peptide through a thiol-yne reaction with a cyclooctyne.

View Article and Find Full Text PDF

The vasodilatory properties of nitric oxide (NO) have been utilized in pharmacotherapy for more than 130 years. Still today, NO-donor drugs are important in the management of cardiovascular diseases. However, inhaled NO or drugs releasing NO and organic nitrates are associated with noteworthy therapeutic shortcomings, including resistance to NO in some disease states, the development of tolerance during long-term treatment, and nonspecific effects, such as post-translational modification of proteins.

View Article and Find Full Text PDF

Novel guanylate cyclase stimulators are disclosed. Design, synthesis, SAR, and pharmacological profile of the compounds are discussed.

View Article and Find Full Text PDF

Novel squalene synthase inhibitors are disclosed. The design, synthesis, SAR and pharmacological profile of the compounds are discussed.

View Article and Find Full Text PDF

Novel squalene synthase inhibitors are disclosed. SAR and pharmacological profile of selected compounds are discussed.

View Article and Find Full Text PDF

Potent and selective adenosine A(1) receptor antagonists were disclosed. SAR and pharmacological profile of selected compounds were discussed.

View Article and Find Full Text PDF

At present nine FDA-approved HIV protease inhibitors have been launched to market, however rapid drug resistance arising under antiviral therapy calls upon novel concepts. Possible strategies are the development of ligands with less peptide-like character or the stabilization of a new and unexpected binding-competent conformation of the protein through a novel ligand-binding mode. Our rational design of pyrrolidinedimethylene diamines was inspired by the idea to incorporate key structural elements from classical peptidomimetics with a non-peptidic heterocyclic core comprising an endocyclic amino function to address the catalytic aspartic acid side chains of Asp 25 and 25'.

View Article and Find Full Text PDF

Hydroxyethylene sulfones were developed as novel scaffolds against aspartyl proteases. A diastereoselective synthesis has been established to introduce the required side chain decoration with desired stereochemistry. Depending on the substitution of the hydroxyethylene sulfone core, micro- to submicromolar inhibition of HIV-1 protease is achieved for the S-configuration at P1 and R-configuration at the hydroxy-group-bearing backbone atom.

View Article and Find Full Text PDF

The combinatorial synthesis of novel biphenyl tetrazoles is described. Key steps include the simultaneous biphenyl formation and phenol deallylation under Suzuki cross-coupling conditions as well as the tetrazole ring formation on solid support. A representative library of 20 biphenyl tetrazoles was synthesized.

View Article and Find Full Text PDF

Protein kinaseC (PKC) is linked to the signal-induced modulation of a wide variety of cellular processes, such as growth, differentiation, secretion, apoptosis, and tumor development. The design and synthesis of small molecules that regulate these different cellular signaling systems is at the forefront of modern drug design. Herein we report a) an efficient method for the synthesis of indolactamV (6), a PKC activator, and its N13-des(methyl) analogues (19) using a regioselective organometallic transformation, a convenient aminomalonate derivative (10) to introduce the appropriate functionality and an enantiospecific enzymic hydrolysis as key steps; b) the use of this method in the first solid-phase synthesis of a teleocidin library modifying the N-13, C-12 and C-7 alkyl chains, and, therefore, producing a library of potential activators and/or inhibitors of PKC of the general structure (32); c) the activation of PKC by selected members of the library using a MARCKS translocation in vivo assay system; d) the observation that some of these analogues are nearly as effective as the natural PKC activators phorbol dibutyrate and (-)-indolactam V (6), and e) the observation that some of these analogues have different potential to induce down-regulation of members of the PKC gene family after chronic stimulation.

View Article and Find Full Text PDF

Potent activators of protein kinase C in fibroblasts: This property was determined for several indolactam V analogues (1) with a new cell-based assay system. This tumor-promoting indole alkaloid and analogues thereof can be synthesized efficiently on the solid phase. The key steps of the combinatorial approach are a regioselective amination of the indole ring and an enantioselective enzymatic reaction.

View Article and Find Full Text PDF