Vibrating probes when immersed in a fluid can provide powerful tools for characterising the surrounding medium. In superfluid He-B, a condensate of Cooper pairs, the dissipation arising from the scattering of quasiparticle excitations from a mechanical oscillator provides the basis of extremely sensitive thermometry and bolometry at sub-millikelvin temperatures. The unique properties of the Andreev reflection process in this condensate also assist by providing a significantly enhanced dissipation.
View Article and Find Full Text PDFThe B phase of superfluid He can be cooled into the pure superfluid regime, where the thermal quasiparticle density is negligible. The bulk superfluid is surrounded by a quantum well at the boundaries of the container, confining a sea of quasiparticles with energies below that of those in the bulk. We can create a non-equilibrium distribution of these states within the quantum well and observe the dynamics of their motion indirectly.
View Article and Find Full Text PDFSince we still lack a theory of classical turbulence, attention has focused on the conceptually simpler turbulence in quantum fluids. Reaching a better understanding of the quantum case may provide additional insight into the classical counterpart. That said, we have hitherto lacked detectors capable of the real-time, non-invasive probing of the wide range of length scales involved in quantum turbulence.
View Article and Find Full Text PDFThe ground state of a fermionic condensate is well protected against perturbations in the presence of an isotropic gap. Regions of gap suppression, surfaces and vortex cores which host Andreev-bound states, seemingly lift that strict protection. Here we show that in superfluid He the role of bound states is more subtle: when a macroscopic object moves in the superfluid at velocities exceeding the Landau critical velocity, little to no bulk pair breaking takes place, while the damping observed originates from the bound states covering the moving object.
View Article and Find Full Text PDFWe report measurements of the thermal conductance of a structure made from commercial Acrylonitrile Butadiene Styrene (ABS) modules, known as LEGO® blocks, in the temperature range from 70 mK to 1.8 K. A power law for the sample's thermal conductivity κ = (8.
View Article and Find Full Text PDFIn this work, we study the influence of orbital viscosity on the evolution of the order-parameter and texture in the B phase of superfluid He near a moving boundary. From the redistribution of thermal quasiparticles within the texture, we develop a model which confers a substantial effective mass on the interface, and provides a new mechanism for friction as the boundary moves. We have tested the model against existing data for the motion of an A-B interface whose motion was controlled by a magnetic field.
View Article and Find Full Text PDFMicroelectromechanical (MEMS) and nanoelectromechanical systems (NEMS) are ideal candidates for exploring quantum fluids, since they can be manufactured reproducibly, cover the frequency range from hundreds of kilohertz up to gigahertz and usually have very low power dissipation. Their small size offers the possibility of probing the superfluid on scales comparable to, and below, the coherence length. That said, there have been hitherto no successful measurements of NEMS resonators in the liquid phases of helium.
View Article and Find Full Text PDFSuperfluid 3He-B in the zero-temperature limit offers a unique means of studying quantum turbulence by the Andreev reflection of quasiparticle excitations by the vortex flow fields. We validate the experimental visualization of turbulence in 3He-B by showing the relation between the vortex-line density and the Andreev reflectance of the vortex tangle in the first simulations of the Andreev reflectance by a realistic 3D vortex tangle, and comparing the results with the first experimental measurements able to probe quantum turbulence on length scales smaller than the intervortex separation.
View Article and Find Full Text PDFWhen immersed in liquid 3He, the nanometer strands of aerogel are coated with a thin layer of solid 3He, forming a network of irregular nanotubes. Owing to its high purity and weak interactions, this system is ideal for studying fundamental processes. We report the first experiments on solid 3He in aerogel at ultralow temperatures, cooled by direct adiabatic demagnetization.
View Article and Find Full Text PDFWe describe the first measurements of line-density fluctuations and spatial correlations of quantum turbulence in superfluid 3He-B. All of the measurements are performed in the low-temperature regime, where the normal-fluid density is negligible. The quantum turbulence is generated by a vibrating grid.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
August 2008
This study presents measurements of the transport of quasiparticle excitations in the B phase of superfluid 3He at temperatures below 0.2Tc. We find that creating and then removing a layer of A-phase superfluid leads to a measurable increase in the thermal impedance of the background B phase.
View Article and Find Full Text PDFAt first sight, low-temperature condensed-matter physics and early Universe cosmology seem worlds apart. Yet, in the last few years a remarkable synergy has developed between the two. It has emerged that, in terms of their mathematical description, there are surprisingly close parallels between them.
View Article and Find Full Text PDFThere has been much recent interest in how impurity scattering may affect the phases of the p-wave superfluid 3He. Impurities may be added to the otherwise absolutely pure superfluid by immersing it in aerogel. Some predictions suggest that impurity scattering may destroy orientational order and force all of the superfluid phases to have an isotropic superfluid density.
View Article and Find Full Text PDFWe describe measurements of the decay of pure superfluid turbulence in superfluid 3He-B, in the low temperature regime where the normal fluid density is negligible. We follow the decay of the turbulence generated by a vibrating grid as detected by vibrating wire resonators. Despite the absence of any classical normal fluid dissipation processes, the decay is consistent with turbulence having the classical Kolmogorov energy spectrum and is remarkably similar to that measured in superfluid 4He at relatively high temperatures.
View Article and Find Full Text PDFWe report a transition in the vorticity generated by a grid moving in the B phase of superfluid 3He at T<
We have measured directly the Andreev scattering of a controllable beam of quasiparticle excitations by a localized tangle of quantum vortices in superfluid 3He-B at low temperatures. We present a microscopic description of the Andreev scattering from a vortex line allowing us to estimate the vortex separation scale in a dilute tangle of vortices, providing a better comparison of the observed decay time of the turbulence with recent numerical simulations. The experiments also suggest that below 200 microK we reach the low temperature limit for turbulent dynamics.
View Article and Find Full Text PDFWe have measured the surface energy of the interface between the A and B phases of superfluid 3He in the low temperature limit at zero pressure. Using a shaped magnetic field, we control the passage of the phase boundary through a small aperture. We obtain the interphase surface energy from the over- or undermagnetization required to force the interface through the aperture in both directions, yielding values of the surface tension and the interfacial contact angle.
View Article and Find Full Text PDFWe have measured the thermal conductivity of liquid 3He in 98% aerogel at ultralow temperatures. Aerogel introduces disorder on a scale comparable to the superfluid coherence length. At low pressures the liquid in the aerogel shows normal-state behavior with conductivity linear in temperature.
View Article and Find Full Text PDFWe report the first measurements of the A-B phase transition of superfluid 3He confined within 98% silica aerogel in high magnetic fields and low temperatures. A disk of aerogel is attached to a vibrating wire resonator. The resonant frequency yields a measure of the superfluid fraction rho(s)/rho of the 3He within the aerogel.
View Article and Find Full Text PDFWe describe the first direct observations of turbulence in superfluid 3He-B. The turbulence is generated by a vibrating-wire resonator driven at velocities exceeding the pair-breaking critical velocity. It is detected by the resulting decrease in the thermal damping on a neighboring "detector" vibrating-wire resonator.
View Article and Find Full Text PDFWe have studied nucleation in superfluid 3He across the A-B phase transition driven by a magnetic field, in a controllable environment at very low temperatures. Both B-->A and A-->B secondary nucleation appear to be governed by the survival of pockets of the new phase trapped at surfaces. We find that, at fields near B(AB), primary A-->B nucleation cannot be triggered by ionizing or neutron irradiation even at very high intensities.
View Article and Find Full Text PDF