A magnetic proton recoil (MPR) neutron spectrometer is being designed for SPARC, a high magnetic field (BT = 12 T), compact (R0 = 1.85 m, a = 0.57 m) tokamak currently under construction in Devens, MA, USA.
View Article and Find Full Text PDFThe next-generation magnetic recoil spectrometer (MRSnext) is being designed to replace the current MRS at the National Ignition Facility and OMEGA for measurements of the neutron spectrum from an inertial confinement fusion implosion. The MRSnext will provide a far-superior performance and faster data turnaround than the current MRS systems, i.e.
View Article and Find Full Text PDFA compact and portable gamma-ray spectrometer has been designed to diagnose different components of the inertial confinement fusion-relevant γ-ray spectrum with energies between ∼3.7-17.9 MeV.
View Article and Find Full Text PDFThe time-resolving magnetic recoil spectrometer (MRSt) is a transformative diagnostic that will be used to measure the time-resolved neutron spectrum from an inertial confinement fusion implosion at the National Ignition Facility (NIF). It uses a CD foil on the outside of the hohlraum to convert fusion neutrons to recoil deuterons. An ion-optical system positioned outside the NIF target chamber energy-disperses and focuses forward-scattered deuterons.
View Article and Find Full Text PDFA new Magnetic Recoil Spectrometer (MRSt) is designed to provide time-resolved measurements of the energy spectrum of neutrons emanating from an inertial confinement fusion implosion at the National Ignition Facility. At present, time integrated parameters are being measured using the existing magnet recoil and neutron time-of-flight spectrometers. The capability of high energy resolution of 2 keV and the extension to high time resolution of about 20 ps are expected to improve our understanding of conditions required for successful fusion experiments.
View Article and Find Full Text PDFThe time-resolving Magnetic Recoil Spectrometer (MRSt) for the National Ignition Facility (NIF) has been identified by the US National Diagnostic Working Group as one of the transformational diagnostics that will reshape the way inertial confinement fusion (ICF) implosions are diagnosed. The MRSt will measure the time-resolved neutron spectrum of an implosion, from which the time-resolved ion temperature, areal density, and yield will be inferred. Top-level physics requirements for the MRSt were determined based on simulations of numerous ICF implosions with varying degrees of alpha heating, P2 asymmetry, and mix.
View Article and Find Full Text PDFWe performed the first direct mass measurements of neutron-rich scandium, titanium, and vanadium isotopes around the neutron number 40 at the RIKEN RI Beam Factory using the time-of-flight magnetic-rigidity technique. The atomic mass excesses of ^{58-60}Sc, ^{60-62}Ti, and ^{62-64}V were measured for the first time. The experimental results show that the two-neutron separation energies in the vicinity of ^{62}Ti increase compared to neighboring nuclei.
View Article and Find Full Text PDFWe perform the first direct mass measurements of neutron-rich calcium isotopes beyond neutron number 34 at the RIKEN Radioactive Isotope Beam Factory by using the time-of-flight magnetic-rigidity technique. The atomic mass excesses of ^{55-57}Ca are determined for the first time to be -18650(160), -13510(250), and -7370(990) keV, respectively. We examine the emergence of neutron magicity at N=34 based on the new atomic masses.
View Article and Find Full Text PDFWe observed the atomic 1s and 2p states of π^{-} bound to ^{121}Sn nuclei as distinct peak structures in the missing mass spectra of the ^{122}Sn(d,^{3}He) nuclear reaction. A very intense deuteron beam and a spectrometer with a large angular acceptance let us achieve a potential of discovery, which includes the capability of determining the angle-dependent cross sections with high statistics. The 2p state in a Sn nucleus was observed for the first time.
View Article and Find Full Text PDFThe (^{12}N, ^{12}C) charge-exchange reaction at 175 MeV/u was developed as a novel probe for studying the isovector spin giant monopole resonance (IVSMR), whose properties are important for better understanding the bulk properties of nuclei and asymmetric nuclear matter. This probe, now available through the production of ^{12}N as a secondary rare-isotope beam, is exothermic, is strongly absorbed at the surface of the target nucleus, and provides selectivity for spin-transfer excitations. All three properties enhance the excitation of the IVSMR compared to other, primarily light-ion, probes, which have been used to study the IVSMR thus far.
View Article and Find Full Text PDFGamow-Teller (GT) transitions in atomic nuclei are sensitive to both nuclear shell structure and effective residual interactions. The nuclear GT excitations were studied for the mass number A = 42, 46, 50, and 54 "f-shell" nuclei in ((3)He, t) charge-exchange reactions. In the (42)Ca → (42)Sc reaction, most of the GT strength is concentrated in the lowest excited state at 0.
View Article and Find Full Text PDFThe double-differential cross sections for the (208)Pb and (90)Zr(t,(3)He) reactions at 300 MeV/u have been measured at the RI Beam Factory at RIKEN. This was the first physics experiment with the SHARAQ magnetic spectrometer. The combined analysis of the present (t,(3)He) data and previous (n,p) data provides the clearest identification for the β(+) isovector spin monopole resonance both in the (208)Tl and (90)Y nuclei, and puts the observations of this giant resonance on a firm foundation.
View Article and Find Full Text PDFPurpose Of The Research: The present government in the Netherlands intends to realize a substantial growth of wind energy before 2020, both onshore and offshore. Wind turbines, when positioned in the neighborhood of residents may cause visual annoyance and noise annoyance. Studies on other environmental sound sources, such as railway, road traffic, industry and aircraft noise show that (long-term) exposure to sound can have negative effects other than annoyance from noise.
View Article and Find Full Text PDFA new experimental approach to the famous problem of the anomalously slow Gamow-Teller (GT) transitions in the beta decay of the A=14 multiplet is presented. The GT strength distributions to excited states in 14C and 14O were studied in high-resolution (d,2He) and (3He,t) charge-exchange reactions on 14N. No-core shell-model calculations capable of reproducing the suppression of the beta decays predict a selective excitation of Jpi=2+ states.
View Article and Find Full Text PDFThe fine structure of the Gamow-Teller resonance in a medium-heavy nucleus is observed for the first time in a high-resolution 90Zr(3He,t)90Nb experiment at the Research Center for Nuclear Physics, Osaka. Using a novel wavelet analysis technique, it is possible to extract characteristic energy scales and to quantify their relative importance for the generation of the fine structure. This method combined with the selectivity of the reaction permits an extraction of the level density of 1+ states in 90Nb.
View Article and Find Full Text PDFIsospin symmetry is expected for the T(z)=+/-1-->0 isobaric analogous transitions in isobars with mass number A, where T(z) is the z component of isospin T. Assuming this symmetry, strengths of analogous Gamow-Teller (GT) transitions within A = 50 isobars were determined from a high energy-resolution study at 0 degrees in combination with the decay Q value and lifetime from the beta decay. This method can be applied to other pf-shell nuclei and can be used to study GT strengths of astrophysical interest.
View Article and Find Full Text PDFAfter 50 years of its prediction, the highest-lying [2 0 2]3/2 orbit among the six Nilsson single-particle orbits originating from the sd shells in prolately deformed nuclei and the rotational band on this orbit were identified. The band members were observed in 25Al at excitation energies of 6-7.5 MeV in a high-resolution 25Mg(3He,t) charge-exchange reaction at 0 degrees having a strong selectivity for Gamow-Teller transitions.
View Article and Find Full Text PDFRadiographics
September 1994
Because the human vision system cannot distinguish the broad range of gray values that a computer visual system can, computerized image analysis may be used to obtain quantitative information from ultrasonographic (US) real-time B-mode scans. Most quantitative US involves programming an off-line computer to accept, analyze, and display US image data in a way that enhances the detection of changes in small-scale structures and blood flow that occur with disease. Common image textural features used in quantitative US tissue characterization consist of first-order gray-level statistics (eg, occurrence frequency of gray levels independent of location or spatial relationship) and second-order gray-level statistics dependent on location and spatial relationship, including statistical analysis of gradient distribution, co-occurrence matrix, covariance matrix, run-length histogram, and fractal features.
View Article and Find Full Text PDF