Fragmentation of the neuronal Golgi apparatus (GA) was reported in amyotrophic lateral sclerosis (ALS), corticobasal degeneration, Alzheimer's and Creutzfeldt-Jacob disease, and in spinocerebelar ataxia type 2 (SCA2). In transgenic mice expressing the G93A mutant of Cu/Zn superoxide dismutase (SOD1) of familial ALS (fALS), fragmentation of the GA of spinal cord motor neurons and aggregation of mutant protein were detected months before the onset of paralysis. Moreover, cells that expressed the G93A and G85R mutants of SOD1 showed fragmentation of the GA and decreased viability without apoptosis.
View Article and Find Full Text PDFGain-of-function mutations of the Cu/Zn superoxide dismutase (SOD1) gene cause dominantly inherited familial amyotrophic lateral sclerosis. The identification of differentially regulated proteins in spinal cords of paralyzed mice expressing SOD1(G93A) may contribute to understanding mechanisms of toxicity by mutant SOD1. Protein profiling showed dysregulation of Stathmin with a marked decrease of its most acidic and phosphorylated isoform, and up-regulation of heat shock proteins 25 and 27, peroxiredoxin 6, phosphatidylinositol transfer protein-alpha, apolipoprotein E, and ferritin heavy chain.
View Article and Find Full Text PDFThe Golgi apparatus of motor neurons (GA) is fragmented in sporadic amyotrophic lateral sclerosis (ALS), in familial ALS with SOD1 mutations, and in mice that express SOD1G93A of familial ALS, in which it was detected months before paralysis. In paralyzed transgenic mice expressing SOD1G93A or SOD1G85R, mutant proteins aggregated not only in the cytoplasm of motor neurons, but also in astrocytes and oligodendrocytes. Furthermore, aggregation of the G85R protein damaged astrocytes and was associated with rapidly progressing disease.
View Article and Find Full Text PDFMice expressing the G93A and other mutations of Cu,Zn superoxide dismutase (SOD1(G93A)) are valid models for the familial form of amyotrophic lateral sclerosis (FALS) with SOD1 mutations and, probably, for sporadic ALS. Adult mice become progressively paralyzed and show most of the histopathological lesions reported in sporadic ALS, i.e.
View Article and Find Full Text PDFFragmentation of the Golgi apparatus (GA) of motor neurons was first described in sporadic amyotrophic lateral sclerosis (ALS) and later confirmed in transgenic mice expressing the G93A mutation of the gene encoding the enzyme Cu,Zn superoxide dismutase (SOD1(G93A)) found in some cases of familial ALS. In these transgenic mice, however, the fragmentation of the neuronal GA was associated with cytoplasmic and mitochondrial vacuoles not seen in ALS. The present new series of transgenic mice expressing 14-17 trans gene copies of SOD1(G93A), compared to 25 copies in the mice we studied previously, showed consistent fragmentation of the GA of spinal cord motor neurons, axonal swellings, Lewy-like body inclusions in neurons and glia, but none of the cytoplasmic or mitochondrial vacuoles originally reported.
View Article and Find Full Text PDFTransgenic mice that express the G93A mutation of human Cu,Zn superoxide dismutase (SOD1(G93A)), found in familial amyotrophic lateral sclerosis (FALS), showed clinical symptoms and histopathological changes of sporadic ALS, including fragmentation of the neuronal Golgi apparatus (GA). The finding of fragmented neuronal GA in asymptomatic mice, months before the onset of paralysis, suggests that the GA is an early target of the pathological processes causing neuronal degeneration. Transgenic mice expressing human SOD1(G93A) have aggregates of mutant protein and ubiquitin in neuronal and glial cytoplasm; they appeared first in the neuropil and later in the perikarya of motor neurons, where they were adjacent to fragmented GA.
View Article and Find Full Text PDFThe Golgi apparatus (GA) of innervated rat and chicken skeletal muscle is present in a typical perinuclear location, and in subsynaptic areas where it disperses after denervation. It was suggested that the subsynaptic segments of the GA are linked with functions involved in the maturation and targeting of synaptic proteins. Similarly, the GA of rat myocardium is found in a perinuclear location and between myofibrils, adjacent to the T system of tubules.
View Article and Find Full Text PDFSeveral diseases involving a variety of cells and tissues are associated with defective enzymes of the Golgi apparatus (GA). An intact GA of neurons is crucial for the physiological function of axons and presynaptic terminals since proteins destined for fast axoplasmic transport are processed by the organelle. Despite the obvious importance of the GA of neurons, its function and involvement in pathological reactions have not been studied systematically.
View Article and Find Full Text PDFThe Golgi apparatus (GA) of spinal cord motor neurons is fragmented in sporadic amyotrophic lateral sclerosis (ALS), and in asymptomatic and symptomatic transgenic mice expressing the G93A mutation of the gene of the human Cu,Zn superoxide dismutase, found in certain cases of familial ALS (FALS) [Gonatas NK (1994) Am J Pathol 145:751-761; Mourelatos Z, et al. (1996) Proc Natl Acad Sci USA 93:5472-5477]. A similar fragmentation of the GA has been described in cells treated with microtubule-depolymerizing drugs, where the organelle is functional and contains both Golgi stacks and trans-Golgi network (TGN), the compartment of exit and targeting of proteins processed by the GA.
View Article and Find Full Text PDFMG160, a type I cysteine-rich membrane sialoglycoprotein residing in the medial cisternae of the rat Golgi apparatus, is highly homologous to CFR, a fibroblast growth factor receptor, and ESL-1, an E-selectin ligand located at the cell surface of mouse myeloid cells and recently detected in the Golgi apparatus as well. The mechanism for the transport of MG160 from the Golgi apparatus to the cell surface is unknown. In this study we found that differential processing of the carboxy-terminal cytoplasmic domain (CD), consisting of amino acids Arg1159 Ile Thr Lys Arg Val Thr Arg Glu Leu Lys Asp Arg1171, resulted in the partial transport of the protein to the plasma membrane and filopodia.
View Article and Find Full Text PDFThe amino acid sequence of MG160, a membrane sialoglycoprotein of the medial cisternae of the rat Golgi apparatus, is more than 90% identical with CFR, a fibroblast growth factor (FGF) binding protein of chicken membranes, and with ESL-1, a ligand for E-selectin of plasma membranes of myeloid cells; furthermore, MG160, isolated by immunoaffinity chromatography from rat brain membranes, binds to basic FGF. The gene for MG160 has been assigned to human chromosome 16q22-23. To characterize this protein further in the human, its cDNA was cloned and sequenced.
View Article and Find Full Text PDFA polyclonal antiserum raised against the carboxy-terminal 17 amino acids of the rat p185c-neu (anct) reacted with a 140 kDa polypeptide in membranes of synaptosome fractions from neocortex and hippocampus of 11-day-old and adult rats. The same antiserum reacted with a 185 kDa polypeptide in microsome membranes from rat pheochromocytoma cells (PC12). By light microscopic immunocytochemistry, the anct antibodies against the 140 kDa protein were localized in the neuropile of brain, cerebellum and spinal cord of 11-day-old and adult rats.
View Article and Find Full Text PDFWe report the primary structure of MG-160, a 160 kDa membrane sialoglycoprotein residing in the medial cisternae of the Golgi apparatus of rat neurons, pheochromocytoma (PC-12), and several other cells. The cDNA encodes a polypeptide of 1,171 amino acids with an M(r) of 133,403. An intralumenal cleavable signal peptide is followed by a Pro-Gln-rich segment and 16 contiguous, approx.
View Article and Find Full Text PDFThe Golgi apparatus (complex) is at the center stage of important functions of processing and transport of plasma membrane, lysosomal, and secreted proteins. The involvement of the Golgi apparatus in the pathogenesis of chronic degenerative diseases of neurons is virtually unknown. In the present study, fragmentation and atrophy of the Golgi apparatus of motor neurons in amyotrophic lateral sclerosis (ALS), has been detected with organelle specific antibodies.
View Article and Find Full Text PDFMonoclonal antibody (MAb) 2H1, raised in mice immunized with membrane fractions from cultured rat pheochromocytoma cells (clonal line PC-12), detects a polypeptide from rat brain and PC-12 cell membranes of 60-65 KD apparent molecular mass. The polypeptide has been localized by immunoelectron microscopy in the rough endoplasmic reticulum (RER) of neurons. By light microscopic immunocytochemistry, several rat tissues and two rat-derived cultured cell types show selective patterns of staining with 2H1.
View Article and Find Full Text PDFWe used a monoclonal antibody (10A8), derived from mice immunized with fractions enriched in Golgi apparatus of rat brain neurons, to isolate an intrinsic membrane sialoglycoprotein of 160 KD from rat brain. By immunoelectron microscopy the sialoglycoprotein, named MG-160, was localized in medical cisternae of the Golgi apparatus of neurons, glia, adenohypophysis, and cultured rat pheochromocytoma (PC 12). The monoclonal antibody (MAb) reacted only with rat tissues.
View Article and Find Full Text PDFMany studies have established the central involvement of the Golgi apparatus in the transport and processing of plasma membrane, lysosomal, and secreted proteins. The Golgi apparatus of neurons is also involved in the axoplasmic flow of fast-moving macromolecules and in the orthograde, retrograde, and transsynaptic transport of exogenous ligands. Markers of the Golgi apparatus, based on traditional methods of enzyme cytochemistry, are not applicable to human tissues obtained at autopsy.
View Article and Find Full Text PDFJ Histochem Cytochem
August 1989
A monoclonal antibody, 3C9, has enabled the detection of a novel Golgi-specific protein in bovine tissues. Immunohistochemical studies at the light microscopic level have detected the 3C9 antigen only in certain cells: exocrine pancreas, gut epithelium, and thymus epithelium. Examination of gut and pancreas by immunoelectron microscopy showed a localization exclusive to the Golgi apparatus.
View Article and Find Full Text PDFA monoclonal antibody (mAb 10A8), derived from mice immunized with fractions of the Golgi apparatus from rat brain neurons, was exploited to isolate and partially characterize a novel glycoprotein of 160 kDa apparent molecular mass which was localized by immunoelectron microscopy in medial cisternae of the Golgi apparatus of neurons, glia, pituitary cells, and rat pheochromocytoma (PC 12). The yield of immunoaffinity purified protein was 0.9 microgram/g of rat brain and represented 3% of the Golgi protein; the protein contained asparagine-linked carbohydrates and sialic acid and N-acetylglucosamine residues; unreduced protein had a greater electrophoretic mobility (130 kDa) consistent with the presence of intrachain disulfide bonds.
View Article and Find Full Text PDFAn antiserum was raised against fractions of the Golgi apparatus of neurons from rat brain. Immunoblots of these fractions with the antiserum showed two principal bands of 185 and 150 kilodaltons (kd) in apparent molecular mass. The antiserum reacted with five or six bands of 200, 150, 130, 100-110, 64, and 40 kd in apparent molecular mass in immunoblots of several crude brain membrane fractions.
View Article and Find Full Text PDFAn antiserum reacting with a 135-kDa antigen of rat liver Golgi apparatus-complex was used to stain, by light microscopic and ultrastructural immunocytochemistry, sections of rat cerebellum and by immunoblot homogenates of whole brain, isolated neurons and a fraction of enriched neuronal Golgi apparatus. In sections of rat cerebellum fixed with periodate-lysine-paraformaldehyde and immunostained with the direct peroxidase or peroxidase-antiperoxidase methods, the Golgi apparatus-complex in perikarya of neurons and glia was stained. Occasionally, nuclear envelopes and cisternae of the rough endoplasmic reticulum of neurons and glia were stained.
View Article and Find Full Text PDFWe describe the ultrastructural localization of plasma cell immunoglobulins in vibratome sections of popliteal lymph nodes. Fixation with glutaraldehyde-paraformaldehyde gave better tissue and antigen preservation than paraformaldehyde or periodic acid lysine-paraformaldehyde; biotinylated Fab fragments of sheep anti-mouse IgG-streptavidin-biotinylated horseradish peroxidase (HRP) or Fab-HRP conjugates gave similar results. With both immunoreagents, excellent tissue preservation and antigen detection was observed in the first layer of cells sectioned with the vibratome.
View Article and Find Full Text PDF