A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.
View Article and Find Full Text PDFIntrinsic toroidal rotation of the deuterium main ions in the core of the DIII-D tokamak is observed to transition from flat to hollow, forming an off-axis peak, above a threshold level of direct electron heating. Nonlinear gyrokinetic simulations show that the residual stress associated with electrostatic ion temperature gradient turbulence possesses the correct radial location and stress structure to cause the observed hollow rotation profile. Residual stress momentum flux in the gyrokinetic simulations is balanced by turbulent momentum diffusion, with negligible contributions from turbulent pinch.
View Article and Find Full Text PDFPhys Rev Lett
February 2013
The shear in the mean field velocity Doppler shift is shown to suppress the amplitude of electric potential fluctuations by inducing a shift in the peak of the radial wave number spectrum. An analytic model of the process shows that the fluctuation spectrum shifts in the direction where the velocity shear is linearly destabilizing but that nonlinear mixing causes a recentering of the spectrum about a shifted radial wave number at reduced amplitude A model for the 2D nonlinear spectrum is used in a quasilinear calculation of the transport that is shown to accurately reproduce the suppression of energy and particle transport and the Reynolds stress due to the velocity shear.
View Article and Find Full Text PDFA critical gradient threshold has been observed for the first time in a systematic, controlled experiment for a locally measured turbulent quantity in the core of a confined high-temperature plasma. In an experiment in the DIII-D tokamak where L(T(e))(-1) = |∇T(e)|/T(e) and toroidal rotation were varied, long wavelength (k(θ)ρ(s) ≲ 0.4) electron temperature fluctuations exhibit a threshold in L(T(e))(-1): below, they change little; above, they steadily increase.
View Article and Find Full Text PDFA correlation electron cyclotron emission (CECE) diagnostic has been used to measure local, turbulent fluctuations of the electron temperature in the core of DIII-D plasmas. This paper describes the hardware and testing of the CECE diagnostic and highlights the importance of measurements of multifield fluctuation profiles for the testing and validation of nonlinear gyrokinetic codes. The process of testing and validating such codes is critical for extrapolation to next-step fusion devices.
View Article and Find Full Text PDFCore electron-temperature fluctuations [0.5%< or =T[over ]_(e)/T_(e)< or =2%, k_(theta)rho_(s)< or =0.3 in neutral-beam-heated low confinement-mode (L-mode) plasmas] are observed to decrease by at least a factor of 4 in standard and quiescent high-confinement-mode (H-mode and QH-mode) regimes in the DIII-D tokamak (r/a=0.
View Article and Find Full Text PDFA new sustained high-performance regime, combining discrete edge and core transport barriers, has been discovered in the DIII-D tokamak. Edge localized modes (ELMs) are replaced by a steady oscillation that increases edge particle transport, thereby allowing particle control with no ELM-induced pulsed divertor heat load. The core barrier resembles those usually seen with a low (L) mode edge, without the degradation often associated with ELMs.
View Article and Find Full Text PDFThe GLF23 transport model is used to dynamically follow bifurcations in the energy and toroidal momentum confinement in DIII-D discharges with an internal transport barrier. The temperatures and toroidal velocity profiles are evolved while self-consistently computing the effects of E x B shear stabilization during the formation and expansion of internal transport barriers. The barrier is predicted to form in a stepwise fashion through a series of sudden jumps in the core-electron and ion temperatures and toroidal rotation velocity.
View Article and Find Full Text PDFA new class of bifurcation of the momentum balance equations for a tokamak plasma is presented. The solution exhibits a monopolar localized jet of ExB flow. The jet is generated by the reduction of turbulent viscosity due to ExB velocity shear.
View Article and Find Full Text PDFPhys Rev D Part Fields
November 1985