Two-dimensional topological insulators are characterized by the bulk gap and one-dimensional helical states running along the edges. The theory predicts the topological protection of the helical transport from coherent backscattering. However, the unexpected deviations of the conductance from the quantized value and localization of the helical modes are generally observed in long samples.
View Article and Find Full Text PDFWe study the transport properties of HgTe quantum wells with critical well thickness, where the band gap is closed and the low energy spectrum is described by a single Dirac cone. In this work, we examined both macroscopic and micron-sized (mesoscopic) samples. In micron-sized samples, we observe a magnetic-field-induced quantized resistance (~/2) at Landau filling factor ν=0, corresponding to the formation of helical edge states centered at the charge neutrality point (CNP).
View Article and Find Full Text PDFThe diffusion of photogenerated holes is studied in a high-mobility mesoscopic GaAs channel where electrons exhibit hydrodynamic properties. It is shown that the injection of holes into such an electron system leads to the formation of a hydrodynamic three-component mixture consisting of electrons and photogenerated heavy and light holes. The obtained results are analyzed within the framework of ambipolar diffusion, which reveals characteristics of a viscous flow.
View Article and Find Full Text PDFQuantum wells formed by layers of HgTe between Hg[Formula: see text]Cd[Formula: see text]Te barriers lead to two-dimensional (2D) topological insulators, as predicted by the BHZ model. Here, we theoretically and experimentally investigate the characteristics of triple HgTe quantum wells. We describe such heterostructure with a three dimensional [Formula: see text] Kane model, and use its eigenstates to derive an effective 2D Hamiltonian for the system.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2021
The thermoelectric response of 80 nm-thick strained HgTe films of a three-dimensional topological insulator (3D TI) has been studied experimentally. An ambipolar thermopower is observed where the Fermi energy moves from conducting to the valence bulk band. The comparison between theory and experiment shows that the thermopower is mostly due to the phonon drag contribution.
View Article and Find Full Text PDFThe electronic analog of the Poiseuille flow is the transport in a narrow channel with disordered edges that scatter electrons in a diffuse way. In the hydrodynamic regime, the resistivity decreases with temperature, referred to as the Gurzhi effect, distinct from conventional Ohmic behaviour. We studied experimentally an electronic analog of the Stokes flow around a disc immersed in a two-dimensional viscous liquid.
View Article and Find Full Text PDFWe have measured the differential resistance in a two-dimensional topological insulator (2DTI) in a HgTe quantum well, as a function of the applied dc current. The transport near the charge neutrality point is characterized by a pair of counter propagating gapless edge modes. In the presence of an electric field, the energy is transported by counter propagating channels in the opposite direction.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2016
Low field magnetoresistance is experimentally studied in a two-dimensional topological insulator (TI) in both diffusive and quasiballistic samples fabricated on top of a wide (14 nm) HgTe quantum well. In all cases a pronounced quasi-linear positive magnetoresistance is observed similar to that found previously in diffusive samples based on a narrow (8 nm) HgTe well. The experimental results are compared with the main existing theoretical models based on different types of disorder: sample edge roughness, nonmagnetic disorder in an otherwise coherent TI and metallic puddles due to locally trapped charges that act like local gate on the sample.
View Article and Find Full Text PDFWe observe the phonon-drag voltage oscillations correlating with the resistance oscillations under microwave irradiation in a two-dimensional electron gas in perpendicular magnetic field. This phenomenon is explained by the influence of dissipative resistivity modified by microwaves on the phonon-drag voltage perpendicular to the phonon flux. When the lowest-order resistance minima evolve into zero-resistance states, the phonon-drag voltage demonstrates sharp features suggesting that current domains associated with these states can exist in the absence of external dc driving.
View Article and Find Full Text PDFOur experimental studies of electron transport in wide (14 nm) HgTe quantum wells confirm the persistence of a two-dimensional topological insulator state reported previously for narrower wells, where it was justified theoretically. Comparison of local and nonlocal resistance measurements indicate edge state transport in the samples of about 1 mm size at temperatures below 1 K. Temperature dependence of the resistances suggests an insulating gap of the order of a few meV.
View Article and Find Full Text PDFPhys Rev Lett
February 2013
We have studied quantized transport in HgTe wells with inverted band structure corresponding to the two-dimensional topological insulator phase (2D TI) with locally controlled density allowing n-p-n and n-2D TI-n junctions. The resistance reveals the fractional plateau 2h/e(2) in the n-p-n regime in the presence of the strong perpendicular magnetic field. We found that in the n-2D TI-n regime the plateaux in resistance in not universal and results from the edge state equilibration at the interface between chiral and helical edge modes.
View Article and Find Full Text PDFPolarized magnetophotoluminescence is employed to study the energies and occupancies of four lowest Landau levels in a couple quantum Hall GaAs/AlGaAs double quantum well. As a result, a magnetic field-induced redistribution of charge over the Landau levels manifesting to the continuous formation of the charge density wave and direct evidence for the symmetric-antisymmetric gap shrinkage at ν=3 are found. The observed interlayer charge exchange causes depolarization of the ferromagnetic ground state.
View Article and Find Full Text PDFNonlocal resistance is studied in a two-dimensional system with a simultaneous presence of electrons and holes in a 20 nm HgTe quantum well. A large nonlocal electric response is found near the charge neutrality point in the presence of a perpendicular magnetic field. We attribute the observed nonlocality to the edge state transport via counterpropagating chiral modes similar to the quantum spin Hall effect at a zero magnetic field and graphene near a Landau filling factor ν=0.
View Article and Find Full Text PDFMagnetotransport measurements on a high-mobility electron bilayer system formed in a wide GaAs quantum well reveal vanishing dissipative resistance under continuous microwave irradiation. Profound zero-resistance states (ZRS) appear even in the presence of additional intersubband scattering of electrons. We study the dependence of photoresistance on frequency, microwave power, and temperature.
View Article and Find Full Text PDFWe study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximately = 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors.
View Article and Find Full Text PDFWe report on the measurements of the quantum Hall effect states in double quantum well structures at the filling factors nu=4N+1 and nu=4N+3, where N is the Landau index number, in the presence of the in-plane magnetic field. The quantum Hall states at these filling factors vanish and reappear several times and exhibit anisotropy. Repeated reentrance of the transport gap occurs due to the periodic vanishing of the tunneling amplitude in the presence of the in-plane field.
View Article and Find Full Text PDF