The controlled binding of proteins on nanoparticle surfaces remains a grand challenge required for many applications ranging from biomedical to energy storage. The difficulty in achieving this ability arises from the different functional groups of the biomolecule that can adsorb on the nanoparticle surface. While most proteins can only adopt a single structure, metamorphic proteins can access at least two different conformations, which presents intriguing opportunities to exploit such structural variations for binding to nanoparticles.
View Article and Find Full Text PDFThe conserved process of centriole duplication requires establishment of a Sas6-centred cartwheel initiated by Plk4's phosphorylation of Ana1/STIL. Subsequently the centriole undergoes conversion to a centrosome requiring its radial expansion and elongation, mediated by a network requiring interactions between Cep135, Ana1/Cep295, and Asterless/Cep152. Here we show that mutant alleles encoding overlapping N- and C-terminal parts of Ana1 are capable of intragenic complementation to rescue radial expansion.
View Article and Find Full Text PDFElucidating the role of molecular chaperones in extremely thermophilic archaea, including the gamma prefoldin (γPFD) in the deep-sea methanogen Methanocaldococcus jannaschii, is integral to understanding microbial adaptation to hot environments. This study focuses on genetically engineered knock-out and overexpression strains to evaluate the importance of γPFD in the growth and thermal tolerance of M. jannaschii.
View Article and Find Full Text PDFThe transition from oocyte to embryo requires translation of maternally provided transcripts that in is activated by Pan Gu kinase to release a rapid succession of 13 mitotic cycles. Mitotic entry is promoted by several protein kinases that include Greatwall/Mastl, whose Endosulfine substrates antagonize Protein Phosphatase 2A (PP2A), facilitating mitotic Cyclin-dependent kinase 1/Cyclin B kinase activity. Here we show that hyperactive can not only be suppressed by mutants in its Endos substrate but also by mutants in Pan Gu kinase subunits.
View Article and Find Full Text PDFPost-translational modifications (PTMs) such as phosphorylation and dephosphorylation can rapidly alter protein surface chemistry and structural conformation, which can switch protein-protein interactions (PPIs) within signaling networks. Recently, -designed phosphorylation-responsive protein switches have been created that harness kinase- and phosphatase-mediated phosphorylation to modulate PPIs. PTM-driven protein switches are promising tools for investigating PTM dynamics in living cells, developing biocompatible nanodevices, and engineering signaling pathways to program cell behavior.
View Article and Find Full Text PDFAs daughter centrioles assemble during G2, they recruit conserved Ana3/RTTN followed by its partner Rcd4/PPP1R35. Together, this contributes to the subsequent recruitment of Ana1/CEP295, required for the centriole's conversion to a centrosome. Here, we show that Rcd4/PPP1R35 is also required to maintain 9-fold centriole symmetry in the Drosophila male germline; its absence causes microtubule triplets to disperse into a reduced number of doublet or singlet microtubules.
View Article and Find Full Text PDFAdvancements in reliable information transfer across biotic-abiotic interfaces have enabled the restoration of lost human function. For example, communication between neuronal cells and electrical devices restores the ability to walk to a tetraplegic patient and vision to patients blinded by retinal disease. These impactful medical achievements are aided by tailored biotic-abiotic interfaces that maximize information transfer fidelity by considering the physical properties of the underlying biological and synthetic components.
View Article and Find Full Text PDFGamma-prefoldin (γPFD), a unique chaperone found in the extremely thermophilic methanogen , self-assembles into filaments , which so far have been observed using transmission electron microscopy and cryo-electron microscopy. Utilizing three-dimensional stochastic optical reconstruction microscopy (3D-STORM), here we achieve ∼20 nm resolution by precisely locating individual fluorescent molecules, hence resolving γPFD ultrastructure both and . Through CF647 NHS ester labeling, we first demonstrate the accurate visualization of filaments and bundles with purified γPFD.
View Article and Find Full Text PDFElectronically conductive protein-based materials can enable the creation of bioelectronic components and devices from sustainable and nontoxic materials, while also being well-suited to interface with biological systems, such as living cells, for biosensor applications. However, as proteins are generally electrical insulators, the ability to render protein assemblies electroactive in a tailorable manner can usher in a plethora of useful materials. Here, an approach to fabricate electronically conductive protein nanowires is presented by aligning heme molecules in proximity along protein filaments, with these nanowires also possessing charge transfer abilities that enable energy harvesting from ambient humidity.
View Article and Find Full Text PDFDe novo genome assemblies are common tools for examining novel biological phenomena in non-model organisms. Here, we present a protocol for preparing Drosophila genomic DNA to create chromosome-level de novo genome assemblies. We describe steps for high-molecular-weight DNA preparation with phenol or Genomic-tips, quality control, long-read nanopore sequencing, short-read DNA library preparation, and sequencing.
View Article and Find Full Text PDFThis study aims to ascertain an in-depth understanding of current practices and perceptions of S&C training in high-level amateur female golfers. A cross-sectional, explorative survey study was constructed which asked questions relating to four key areas: i) general participant information, ii) current strength and conditioning (S&C) practices, iii) the perceived influence of S&C training on golf performance, and iv) knowledge and awareness of S&C. Results showed that the majority of female players had participated in some form of S&C training in the past, with the majority believing that clubhead speed and carry distance were the primary golfing metrics which could be positively impacted.
View Article and Find Full Text PDFHeredity (Edinb)
February 2024
From concatenated chromosomes to polyploidization, large-scale genome changes are known to occur in parthenogenetic animals. Here, we report mosaic aneuploidy in larval brains of facultatively parthenogenetic Drosophila. We identified a background of aneuploidy in D.
View Article and Find Full Text PDFMost species of sexually reproducing Drosophila are capable of some degree of facultative parthenogenesis, which involves the initiation of development in an unfertilized egg. Here, we present an optimized protocol to screen facultative parthenogenesis in Drosophila. We describe steps for the collection and maintenance of virgin flies.
View Article and Find Full Text PDFRobinson, L, Murray, A, Ehlert, A, Wells, J, Jarvis, P, Turner, A, Glover, D, Coughlan, D, Hembrough, R, and Bishop, C. Effects of physical training and associations between physical performance characteristics and golf performance in female players: A systematic review with meta-analysis. J Strength Cond Res 37(12): e646-e655, 2023-The aims of this systematic review were to assess the association between physical performance and measures of golf performance, and the effects of physical training on measures of golf performance, in female golfers.
View Article and Find Full Text PDFFacultative parthenogenesis enables sexually reproducing organisms to switch between sexual and asexual parthenogenetic reproduction. To gain insights into this phenomenon, we sequenced the genomes of sexually reproducing and parthenogenetic strains of Drosophila mercatorum and identified differences in the gene expression in their eggs. We then tested whether manipulating the expression of candidate gene homologs identified in Drosophila mercatorum could lead to facultative parthenogenesis in the non-parthenogenetic species Drosophila melanogaster.
View Article and Find Full Text PDFProg Community Health Partnersh
July 2023
Carbonic anhydrases (CAs) are a metalloenzyme family that have important roles in cellular processes including pH homeostasis and have been implicated in multiple pathological conditions. Small molecule inhibitors have been developed to target carbonic anhydrases, but the effects of post-translational modifications (PTMs) on the activity and inhibition profiles of these enzymes remain unclear. Here, we investigate the effects of phosphorylation, the most prevalent carbonic anhydrase PTM, on the activities and drug-binding affinities of human CAI and CAII, two heavily modified active isozymes.
View Article and Find Full Text PDFGamete formation is essential for sexual reproduction in metazoans. Meiosis in males gives rise to spermatids that must differentiate and individualize into mature sperm. In Drosophila melanogaster, individualization of interconnected spermatids requires the formation of individualization complexes that synchronously move along the sperm bundles.
View Article and Find Full Text PDFParthenogenesis has been documented in almost every phylum of animals, and yet this phenomenon is largely understudied. It has particular importance in dipterans since some parthenogenetic species are also disease vectors and agricultural pests. Here, we present a catalogue of parthenogenetic dipterans, although it is likely that many more remain to be identified, and we discuss how their developmental biology and interactions with diverse environments may be linked to different types of parthenogenetic reproduction.
View Article and Find Full Text PDFInt J Environ Res Public Health
February 2023
Introduction: There has been much debate recently on the participation of transgender and gender-diverse (TGD) athletes in sport, particularly in relation to fairness, safety and inclusion. The 2021 IOC Framework on Fairness, Inclusion and Non-discrimination acknowledges the central role that eligibility criteria play in ensuring fairness, particularly in the female category, and states that athletes should not be excluded solely on the basis of their TGD identity.
Aims: To identify policies that address TGD athlete participation in the 15 major United Kingdom (UK) sporting organisations and to summarise the evidence for each of these policies.