Background: Breast cancers treated with aromatase inhibitors (AIs) can develop AI resistance, which is often driven by estrogen receptor-alpha (ERα/ESR1) activating mutations, as well as by ER-independent signaling pathways. The breast ER antagonist lasofoxifene, alone or combined with palbociclib, elicited antitumor activities in a xenograft model of ER + metastatic breast cancer (mBC) harboring ESR1 mutations. The current study investigated the activity of LAS in a letrozole-resistant breast tumor model that does not have ESR1 mutations.
View Article and Find Full Text PDFThe constitutively active ESR1 Y537S mutation is associated with endocrine therapy (ET) resistance and progression of metastatic breast cancer through its effects on estrogen receptor (ERα) gene regulatory functions. However, the complex relationship between ERα and the progesterone receptor (PR), known as ERα/PR crosstalk, has yet to be characterized in the context of the ERα Y537S mutation. Using proximity ligation assays, we identify an increased physical interaction of ERα and PR in the context of the ERα Y537S mutation, including in the nucleus where this interaction may translate to altered gene expression.
View Article and Find Full Text PDFEstrogen receptor-positive (ER+) invasive lobular breast cancer (ILC) comprises about ~15% of breast cancer. ILC's unique genotypic (loss of wild type E-cadherin expression) and phenotypic (small individual round cancer cells that grow in discontinuous nests) are thought to contribute to a distinctive pattern of metastases to serosal membranes. Unlike invasive ductal carcinoma (IDC), ILC metastases often intercalate into the mesothelial layer of the peritoneum and other serosal surfaces.
View Article and Find Full Text PDFWe reinvestigated the reported method for the synthesis of ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1-indol-3-yl]-but-2-enoate (MIBE), which was obtained by the reaction of 5-hydroxy-1-methyl-1-indole with excess ethyl acetoacetate catalyzed by indium(III) chloride. Based on the NMR and MS data, we assigned the structure of the isolated product as (3)-3-(2-ethoxy-2-oxoethylidene)-1,2,3,4-tetrahydro-7-hydroxy-1,4-dimethylcyclopent[]indole-1-acetate rather than the reported MIBE.
View Article and Find Full Text PDFSteroid hormone receptors play a crucial role in the development and characterization of the majority of breast cancers. These receptors canonically function through homodimerization, but physical interactions between different hormone receptors play a key role in cell functions as well. The estrogen receptor (ERα) and progesterone receptor (PR), for example, are involved in a complex set of interactions known as ERα/PR crosstalk.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
May 2023
We describe a new demethylation method for dimethyl phosphonate esters using sodium ethanethiolate. The new procedure allows demethylation of nucleoside dimethyl phosphonate esters without 1'-α-anomerization, providing an improved synthesis of 5'-methylene substituted 2',5'-deoxynucleotides.
View Article and Find Full Text PDFDespite unequivocal roles in disease, transcription factors (TFs) remain largely untapped as pharmacologic targets due to the challenges in targeting protein-protein and protein-DNA interactions. Here we report a chemical strategy to generate modular synthetic transcriptional repressors (STRs) derived from the bHLH domain of MAX. Our synthetic approach yields chemically stabilized tertiary domain mimetics that cooperatively bind the MYC/MAX consensus E-box motif with nanomolar affinity, exhibit specificity that is equivalent to or beyond that of full-length TFs and directly compete with MYC/MAX protein for DNA binding.
View Article and Find Full Text PDFMutations of the intracellular estrogen receptor alpha (ERα) is implicated in 70% of breast cancers. Therefore, it is of considerable interest to image various mutants (L536S, Y537S, D538G) in living cancer cell lines, particularly as a function of various anticancer drugs. We therefore developed a small (13 kDa) Affimer, which, after fluorescent labeling, is able to efficiently label ERα by traveling through temporary pores in the cell membrane, created by the toxin streptolysin O.
View Article and Find Full Text PDFET resistance is a critical problem for estrogen receptor-positive (ER+) breast cancer. In this study, we have investigated how alterations in sphingolipids promote cell survival in ET-resistant breast cancer. We have performed LC-MS-based targeted sphingolipidomics of tamoxifen-sensitive and -resistant MCF-7 breast cancer cell lines.
View Article and Find Full Text PDFChemical manipulation of estrogen receptor alpha ligand binding domain structural mobility tunes receptor lifetime and influences breast cancer therapeutic activities. Selective estrogen receptor modulators (SERMs) extend estrogen receptor alpha (ERα) cellular lifetime/accumulation. They are antagonists in the breast but agonists in the uterine epithelium and/or in bone.
View Article and Find Full Text PDFBackground: While estrogen receptor (ER) positive breast tumors generally respond well to endocrine therapy (ET), up to 40% of patients will experience relapse, either while on endocrine therapy or after ET is completed. We previously demonstrated that the selective pressure of tamoxifen activates the NFκB pathway in ER + patient tumors, breast cancer cell lines, and breast cancer xenograft tumors, and that this activation allows for survival of a subpopulation of NFκB + cells that contribute to cell regrowth and tumor relapse after ET withdrawal. However, the mechanisms contributing to the expansion of an NFκB + cell population on ET are unknown.
View Article and Find Full Text PDFMetastatic estrogen receptor α (ERα)-positive breast cancer is presently incurable. Seeking to target these drug-resistant cancers, we report the discovery of a compound, called ErSO, that activates the anticipatory unfolded protein response (a-UPR) and induces rapid and selective necrosis of ERα-positive breast cancer cell lines in vitro. We then tested ErSO in vivo in several preclinical orthotopic and metastasis mouse models carrying different xenografts of human breast cancer lines or patient-derived breast tumors.
View Article and Find Full Text PDFAlthough most primary estrogen receptor (ER)-positive breast cancers respond well to endocrine therapies, many relapse later as metastatic disease due to endocrine therapy resistance. Over one third of these are associated with mutations in the ligand-binding domain (LBD) that activate the receptor independent of ligand. We have used an array of advanced computational techniques rooted in molecular dynamics simulations, in concert with and validated by experiments, to characterize the molecular mechanisms by which specific acquired somatic point mutations give rise to ER constitutive activation.
View Article and Find Full Text PDFBackground: Endocrine therapy remains the mainstay of treatment for estrogen receptor-positive (ER+) breast cancer. Constitutively active mutations in the ligand binding domain of ERα render tumors resistant to endocrine agents. Breast cancers with the two most common ERα mutations, Y537S and D538G, have low sensitivity to fulvestrant inhibition, a typical second-line endocrine therapy.
View Article and Find Full Text PDF(1) Background: Drug imputation methods often aim to translate in vitro drug response to in vivo drug efficacy predictions. While commonly used in retrospective analyses, our aim is to investigate the use of drug prediction methods for the generation of novel drug discovery hypotheses. Triple-negative breast cancer (TNBC) is a severe clinical challenge in need of new therapies.
View Article and Find Full Text PDFPatients with long-term estrogen-deprived breast cancer, after resistance to tamoxifen or aromatase inhibitors develops, can experience tumor regression when treated with estrogens. Estrogen's antitumor effect is attributed to apoptosis via the estrogen receptor (ER). Estrogen treatment can have unpleasant gynecologic and nongynecologic adverse events; thus, the development of safer estrogenic agents remains a clinical priority.
View Article and Find Full Text PDFWe report the first precision measurement of the parity-violating asymmetry in the direction of proton momentum with respect to the neutron spin, in the reaction ^{3}He(n,p)^{3}H, using the capture of polarized cold neutrons in an unpolarized active ^{3}He target. The asymmetry is a result of the weak interaction between nucleons, which remains one of the least well-understood aspects of electroweak theory. The measurement provides an important benchmark for modern effective field theory and potential model calculations.
View Article and Find Full Text PDFHigh-dose synthetic estrogen therapy was the standard treatment of advanced breast cancer for three decades until the discovery of tamoxifen. A range of substituted triphenylethylene synthetic estrogens and diethylstilbestrol were used. It is now known that low doses of estrogens can cause apoptosis in long-term estrogen deprived (LTED) breast cancer cells resistant to antiestrogens.
View Article and Find Full Text PDFWe show unequivocal evidence for formation of He_{2}^{*} excimers in liquid He II created by ionizing radiation produced through neutron capture. Laser beams induce fluorescence of the excimers. The fluorescence is recorded at a rate of 55.
View Article and Find Full Text PDFThe purpose of this study was to identify critical pathways promoting survival of tamoxifen-tolerant, estrogen receptor α positive (ER) breast cancer cells, which contribute to therapy resistance and disease recurrence. Gene expression profiling and pathway analysis were performed in ER breast tumors of patients before and after neoadjuvant tamoxifen treatment and demonstrated activation of the NF-κB pathway and an enrichment of epithelial-to mesenchymal transition (EMT)/stemness features. Exposure of ER breast cancer cell lines to tamoxifen, and , gives rise to a tamoxifen-tolerant population with similar NF-κB activity and EMT/stemness characteristics.
View Article and Find Full Text PDFNotwithstanding the positive clinical impact of endocrine therapies in estrogen receptor-alpha (ERα)-positive breast cancer, de novo and acquired resistance limits the therapeutic lifespan of existing drugs. Taking the position that resistance is nearly inevitable, we undertook a study to identify and exploit targetable vulnerabilities that were manifest in endocrine therapy-resistant disease. Using cellular and mouse models of endocrine therapy-sensitive and endocrine therapy-resistant breast cancer, together with contemporary discovery platforms, we identified a targetable pathway that is composed of the transcription factors FOXA1 and GRHL2, a coregulated target gene, the membrane receptor LYPD3, and the LYPD3 ligand, AGR2.
View Article and Find Full Text PDFMacrocyclization can improve bioactive peptide ligands through preorganization of molecular topology, leading to improvement of pharmacologic properties like binding affinity, cell permeability, and metabolic stability. Here we demonstrate that Diels-Alder [4 + 2] cycloadditions can be harnessed for peptide macrocyclization and stabilization within a range of peptide scaffolds and chemical environments. Diels-Alder cyclization of diverse diene-dienophile reactive pairs proceeds rapidly, in high yield and with tunable stereochemical preferences on solid-phase or in aqueous solution.
View Article and Find Full Text PDFOne in eight women will be diagnosed with breast cancer in their lifetime. Because estrogen receptor-α (ERα) is expressed in ~70% of patients, therapeutic intervention by ERα-targeted endocrine therapies remains the leading strategy to prevent progression and/or metastasis in the adjuvant setting. However, the efficacy of these therapies will be diminished by the development of acquired resistance after prolonged treatment regimens.
View Article and Find Full Text PDFPhys Rev Lett
December 2018
We report the first observation of the parity-violating gamma-ray asymmetry A_{γ}^{np} in neutron-proton capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron Source at Oak Ridge National Laboratory. A_{γ}^{np} isolates the ΔI=1, ^{3}S_{1}→^{3}P_{1} component of the weak nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single coupling constant in either the DDH meson exchange model or pionless effective field theory. We measured A_{γ}^{np}=[-3.
View Article and Find Full Text PDF