Publications by authors named "GJ McIntyre"

Single-crystal X-ray and neutron diffraction data are usually collected using separate samples. This is a disadvantage when the sample is studied at high pressure because it is very difficult to achieve exactly the same pressure in two separate experiments, especially if the neutron data are collected using Laue methods where precise absolute values of the unit-cell dimensions cannot be measured to check how close the pressures are. In this study, diffraction data have been collected under the same conditions on the same sample of copper(II) sulfate pentahydrate, using a conventional laboratory diffractometer and source for the X-ray measurements and the Koala single-crystal Laue diffractometer at the ANSTO facility for the neutron measurements.

View Article and Find Full Text PDF

Functional materials are of critical importance to electronic and smart devices. A deep understanding of the structure-property relationship is essential for designing new materials. In this work, instead of utilizing conventional atomic coordinates, a symmetry-mode approach is successfully used to conduct structure refinement of the neutron powder diffraction data of (1-)AgNbO-LiTaO (0 ≤ ≤ 0.

View Article and Find Full Text PDF

Neutron powder diffraction experiments were carried out on the magnetoelectric compound series (Co Mn )NbO (x  =  0, 1, 2, 3, 3.5, 3.9, 3.

View Article and Find Full Text PDF

The phase transition sequences of two members of the tetramethylammonium tetrachlorometallate(III) family of hybrid organic-inorganic salts have been determined and structurally characterized as a function of temperature for the first time. Unusually, a reduction in point-group symmetry with increasing temperature until reaching a cubic prototype phase is observed. Two additional intermediate phases are observed for Fe.

View Article and Find Full Text PDF

Lone-pair cations are known to enhance oxide ion conductivity in fluorite- and Aurivillius-type materials. Among the apatite-type phases, the opposite trend is found for the more widely studied silicate oxide ion conductors, which exhibit a dramatic decrease in conductivity on Bi(iii) incorporation. In this work, the influence of lone-pair cations on the properties of apatite-type germanate oxide ion conductors has been investigated by preparing and characterising seven related compositions with varying Bi(iii) content, by X-ray and neutron powder diffraction and impedance spectroscopy.

View Article and Find Full Text PDF

The magnetic properties and magnetic structure are presented for CoPS, a quasi-two-dimensional antiferromagnet on a honeycomb lattice with a Néel temperature of [Formula: see text] K. The compound is shown to have XY-like anisotropy in its susceptibility, and the anisotropy is analysed to extract crystal field parameters. For temperatures between 2 K and 300 K, no phase transitions were observed in the field-dependent magnetization up to 10 Tesla.

View Article and Find Full Text PDF

Strong anisotropic compression with pressure on the remarkable non-linear optical material KBeBOF has been observed with the linear compression coefficient along the c axis found to be about 40 times larger than that along the a axis. An unusual non-monotonic pressure response was observed for the a lattice parameter. The derived bulk modulus of 31 ± 1 GPa indicates that KBeBOF is a very soft oxide material yet with stable structure up to 45 GPa.

View Article and Find Full Text PDF

The structure of the primary amino acid L-leucine has been determined for the first time by neutron diffraction. This was made possible by the use of modern neutron Laue diffraction to overcome the previously prohibitive effects of crystal size and quality. The packing of the structure into hydrophobic and hydrophilic layers is explained by the intermolecular interaction energies calculated using the PIXEL method.

View Article and Find Full Text PDF

The pressure- and temperature-dependent phase transitions in the ferroelectric material rubidium hydrogen sulfate (RbHSO) are investigated by a combination of neutron Laue diffraction and high-pressure X-ray diffraction. The observation of disordered O-atom positions in the hydrogen sulfate anions is in agreement with previous spectroscopic measurements in the literature. Contrary to the mechanism observed in other hydrogen-bonded ferroelectric materials, H-atom positions are well defined and ordered in the paraelectric phase.

View Article and Find Full Text PDF

Expressing double-stranded RNA (dsRNA) in transgenic plants to silence essential genes within herbivorous pests is referred to as -kingdom RNA interference (TK-RNAi) and has emerged as a promising strategy for crop protection. However, the dicing of dsRNA into siRNAs by the plant's intrinsic RNAi machinery may reduce this pesticidal activity. Therefore, genetic constructs, encoding ∼200 nt duplex-stemmed-hairpin (hp) RNAs, targeting the acetylcholinesterase gene of the cotton bollworm, , were integrated into either the nuclear or the chloroplast genome of Undiced, full-length hpRNAs accumulated in transplastomic lines of and conferred strong protection against herbivory while the hpRNAs of nuclear-transformed plants were processed into siRNAs and gave more modest anti-feeding activity.

View Article and Find Full Text PDF

Negative linear compressibility (NLC), the increase in a unit cell length with pressure, is a rare phenomenon in which hydrostatic compression of a structure promotes expansion along one dimension. It is usually a consequence of crystal structure topology. We show that the source of NLC in the Co(ii) citrate metal-organic framework UTSA-16 lies not in framework topology, but in the relative torsional flexibility of Co(ii)-centred tetrahedra compared to more rigid octahedra.

View Article and Find Full Text PDF

The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation.

View Article and Find Full Text PDF

Aperiodic composite crystals present long-range order without translational symmetry. These materials may be described as the intersection in three dimensions of a crystal which is periodic in a higher-dimensional space. In such materials, symmetry breaking must be described as structural changes within these crystallographic superspaces.

View Article and Find Full Text PDF

The homometallic wheel compound [Cr8F8(O2CCMe3)16] formed with fluorine and pivalic acid ligands can be modified by introducing in the synthesis process a divalent cation M capable of octahedral coordination instead of one of the trivalent Cr centres in the ring. Heterometallic mono-anionic species [Cr7MF8(O2CCMe3)16](-) can form diethylammonium salts and be crystallized from ethylacetate solution as compounds with the general formula [NH2Et2][Cr7MF8((t)BuCO2)16][C4H8O2]0.5 for M = Mn, Fe, Co, Ni, Cu, Zn and Cd.

View Article and Find Full Text PDF

Diatrizoic acid (DTA), a clinically used X-ray contrast agent, crystallises in two hydrated, three anhydrous and nine solvated solid forms, all of which have been characterised by X-ray crystallography. Single-crystal neutron structures of DTA dihydrate and monosodium DTA tetrahydrate have been determined. All of the solid-state structures have been analysed using partial atomic charges and hardness algorithm (PACHA) calculations.

View Article and Find Full Text PDF

A variable-temperature (VT) crystal structure study of [Fe(TPP)Cl] (TPP(2-) = meso-tetraphenylporphyrinate) and Hirshfeld surface analyses of its structures and previously reported structures of [M(TPP)(NO)] (M = Fe, Co) reveal that intermolecular interactions are a significant factor in structure disorder in the three metalloporphyrins and phase changes in the nitrosyl complexes. These interactions cause, for example, an 8-fold disorder in the crystal structures of [M(TPP)(NO)] at room temperature that obscures the M-NO binding. Hirshfeld analyses of the structure of [Co(TPP)(NO)] indicate that the phase change from I4/m to P1 leads to an increase in void-volume percentage, permitting additional structural compression through tilting of the phenyl rings to offset the close-packing interactions at the interlayer positions in the crystal structures with temperature decrease.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how applying pressure (up to 0.17 GPa) affects the spin-crossover compound {Fe(pmd)2[Ag(CN)2]2}n, specifically focusing on its temperature-dependent behavior and structural changes.
  • As pressure is increased, the transition temperature for the high-spin to low-spin state shifts upward, indicating that the compound is moderately sensitive to pressure, with a change of about 140 K for each GPa applied.
  • Despite changes in spin states, the crystal structure's symmetry remains stable throughout the pressure and temperature ranges, with the most significant structural changes occurring in the octahedral [FeN6] components, particularly affecting the axial positions.
View Article and Find Full Text PDF

We have determined the magnetic structures of single-crystal thin-films of IrMn3 for the crystallographic phases of chemically-ordered L12, and for chemically-disordered face-centred-cubic, which is the phase typically chosen for information-storage devices. For the chemically-ordered L12 thin-film, we find the same triangular magnetic structure as reported for the bulk material. We determine the magnetic structure of the chemically-disordered face-centred-cubic alloy for the first time, which differs from theoretical predictions, with magnetic moments tilted away from the crystal diagonals towards the face-planes.

View Article and Find Full Text PDF

We investigate low-temperature spin correlations in the metallic frustrated magnet β-Mn1-xCox. Single-crystal polarized-neutron scattering experiments reveal the persistence of highly structured magnetic diffuse scattering and the absence of periodic magnetic order to T=0.05  K.

View Article and Find Full Text PDF

The high-temperature cubic form of bismuth oxide, δ-Bi2O3, is the best intermediate-temperature oxide-ionic conductor known. The most elegant way of stabilizing δ-Bi2O3 to room temperature, while preserving a large part of its conductivity, is by doping with higher valent transition metals to create wide solid-solutions fields with exceedingly rare and complex (3 + 3)-dimensional incommensurately modulated "hypercubic" structures. These materials remain poorly understood because no such structure has ever been quantitatively solved and refined, due to both the complexity of the problem and a lack of adequate experimental data.

View Article and Find Full Text PDF

Complementary experimental techniques and ab initio calculations were used to determine the origin and nature of negative thermal expansion (NTE) in the archetype metal-organic framework MOF-5 (Zn(4)O(1,4-benzenedicarboxylate)(3)). The organic linker was probed by inelastic neutron scattering under vacuum and at a gas pressure of 175 bar to distinguish between the pressure and temperature responses of the framework motions, and the local structure of the metal centers was studied by X-ray absorption spectroscopy. Multi-temperature powder- and single-crystal X-ray and neutron diffraction was used to characterize the polymeric nature of the sample and to quantify NTE over the large temperature range 4-400 K.

View Article and Find Full Text PDF

The phenomenon of solid-state proton migration within molecular complexes containing short hydrogen bonds is investigated in two dimethylurea-oxalic acid complexes. Extensive characterisation by both X-ray and neutron diffraction shows that proton migration along the hydrogen bond can be induced in these complexes as a function of temperature. This emphasises the subtle features of the hydrogen bond potential well in such short hydrogen bonded complexes, both intrinsically and in the effect of the local crystalline environment.

View Article and Find Full Text PDF

The unusual uranium reaction system in which uranium(4+) and uranium(3+) hydrides interconvert by formal bimetallic reductive elimination and oxidative addition reactions, [(C(5)Me(5))(2)UH(2)](2) (1) ⇌ [(C(5)Me(5))(2)UH](2) (2) + H(2), was studied by employing multiconfigurational quantum chemical and density functional theory methods. 1 can act as a formal four-electron reductant, releasing H(2) gas as the byproduct of four H(2)/H(-) redox couples. The calculated structures for both reactants and products are in good agreement with the X-ray diffraction data on 2 and 1 and the neutron diffraction data on 1 obtained under H(2) pressure as part of this study.

View Article and Find Full Text PDF