(1)H NMR relaxation and diffusion studies were performed on water-in-CO(2) (W/C) microemulsion systems formed with phosphorus fluorosurfactants of bis[2-(F-hexyl)ethyl] phosphate salts (DiF(8)), having different counterions (Na(+), NH(4)(+), N(CH(3))(4)(+)) by means of high-pressure in situ NMR. Water has a low solubility in CO(2) and is mainly solubilized by the microemulsion droplets formed with surfactants added to CO(2) and water mixtures. There is rapid exchange of water between the bulk CO(2) and the microemulsion droplets; however, NMR relaxation measurements show that the entrapped water has restricted motion, and there is little "free" water in the core.
View Article and Find Full Text PDFSmall-angle neutron scattering (SANS) has been used to study the adsorption behavior of supercritical carbon dioxide (CO2) in porous Vycor glass and silica aerogels. Measurements were performed along two isotherms (T=35 and 80 degrees C) as a function of pressure (P) ranging from atmospheric up to 25 MPa, which corresponds to the bulk fluid densities ranging from rho(CO2) approximately 0 to 0.9 gcm3.
View Article and Find Full Text PDFAnionic phosphodiester surfactants, possessing either two fluorinated chains (F/F) or one hydrocarbon chain and one fluorinated chain (H/F), were synthesized and evaluated for solubility and self-assembly in liquid and supercritical carbon dioxide. Several surfactants, of both F/F and H/F types and having varied counterions, were found to be capable of solubilizing water-in-CO2 (W/C), via the formation of microemulsions, expanding upon the family of phosphate fluorosurfactants already found to stabilize W/C microemulsions. Small-angle neutron scatteringwas used to directly characterize the microemulsion particles at varied temperatures, pressures, and water loadings, revealing behavior consistent with previous results on W/C microemulsions.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2004
We report the results of an experimental study of the effect of a dilute silica network on liquid-gas critical phenomena in carbon dioxide (CO2). Using small-angle neutron scattering, we measured the correlation length of the density fluctuations in bulk (xi(bulk)) and confined CO2 (xi(conf)) as a function of temperature and average fluid density. We find that quenched disorder induced by an aerogel suppresses density fluctuations: xi(conf) loses the Ising model divergence characteristic of xi(bulk) and does not exceed the size of pores in the homogeneous region.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2002
We demonstrate that macromolecules in miscible polymer blends may behave as good, Theta, and poor polymeric solvents for each other. We construct a conceptual phase diagram, delineating the range of validity of the random-phase approximation, outside of which polymers contract or expand beyond their unperturbed dimensions, contrary to common assumptions. Remarkably, the correlation length for polymer blends, solutions, and supercritical mixtures collapses onto a master curve, reflecting universal behavior for macromolecules in polymeric and small-molecule Theta solvents.
View Article and Find Full Text PDFAnionic phosphate fluorosurfactants were shown to self-assemble into water-in-carbon dioxide microemulsions. The surfactants, having either two fluorinated chains or one fluorinated chain and one hydrocarbon chain, facilitated significant water uptake in CO2. Small angle neutron scattering (SANS) measurements of surfactant/water/CO2 solutions confirmed the presence of nanometer-scale aggregates, indicative of microemulsion formation.
View Article and Find Full Text PDFPhys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
October 2000
In this paper we report a small-angle neutron-scattering investigation of micelle formation by the fluorocarbon-hydrocarbon block copolymer, polyvinyl acetate-b-poly (1,1,2, 2-tetrahydroperfluoro-octyl acrylate) in supercritical CO2 (scCO(2)) at 313 K. At high pressure the copolymer is in a monomeric state with a random coil structure, while at low pressure the polymer forms spherical aggregates stable in a wide range of thermodynamic conditions. By profiling pressure, a sharp monomer-micelle transition is obtained due to the tuning of the solvating ability of scCO(2).
View Article and Find Full Text PDFPhys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
April 2000
This paper reports a small angle neutron scattering investigation of micelle formation by fluorocarbon-hydrocarbon block copolymers in supercritical CO2(sc-CO2) at 65 degrees C. A sharp unimer-micelle transition is obtained due to the tuning of the solvating ability of sc-CO2 by profiling pressure, so that the block copolymer, in a semidilute solution, finds sc-CO2 a good solvent at high pressure and a poor solvent at low pressure. At high pressure the copolymer is in a monomeric state with a random coil structure.
View Article and Find Full Text PDFInterfacially active block copolymer amphiphiles have been synthesized and their self-assembly into micelles in supercritical carbon dioxide (CO2) has been demonstrated with small-angle neutron scattering (SANS). These materials establish the design criteria for molecularly engineered surfactants that can stabilize and disperse otherwise insoluble matter into a CO2 continuous phase. Polystyrene-b-poly(1,1-dihydroperfluorooctyl acrylate) copolymers self-assembled into polydisperse core-shell-type micelles as a result of the disparate solubility characteristics of the different block segments in CO2.
View Article and Find Full Text PDFPhys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
February 1996