Recent experimental advances in ultracold Fermi gases allow for exploring response functions under different dynamical conditions. In particular, the issue of obtaining a "quasirepulsive" regime starting from a Fermi gas with an attractive interparticle interaction while avoiding the formation of the two-body bound state is currently debated. Here, we provide a calculation of the density and spin response for a wide range of temperature and coupling both in the attractive and quasirepulsive regime, whereby the system is assumed to evolve nonadiabatically toward the "upper branch" of the Fermi gas.
View Article and Find Full Text PDFWave-vector resolved radio frequency spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at T(c), and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above T(c).
View Article and Find Full Text PDFThe radio-frequency spectra of ultracold Fermi atoms are calculated by including final-state interactions affecting the excited level of the transition and compared with the experimental data. A competition is revealed between pairing-gap effects which tend to push the oscillator strength toward high frequencies away from threshold and final-state effects which tend instead to pull the oscillator strength toward threshold. As a result of this competition, the position of the peak of the spectra cannot be simply related to the value of the pairing gap, whose extraction thus requires support from theoretical calculations.
View Article and Find Full Text PDFWe study the stationary Josephson effect for neutral fermions across the BCS-BEC (Bose-Einstein condensate) crossover, by solving numerically the Bogoliubov-de Gennes equations at zero temperature. The Josephson current is found to be considerably enhanced for all barriers at about unitarity. For vanishing barrier, the Josephson critical current approaches the Landau limiting value which, depending on the coupling, is determined by either pair-breaking or sound-mode excitations.
View Article and Find Full Text PDFPhys Rev Lett
April 2006
We analyze the effects of imbalancing the populations of two-component trapped fermions, in the Bose-Einstein condensate limit of the attractive interaction between different fermions. Starting from the gap equation with two fermionic chemical potentials, we derive a set of coupled equations that describe composite bosons and excess fermions. We include in these equations the processes leading to the correct dimer-dimer and dimer-fermion scattering lengths.
View Article and Find Full Text PDFA debated issue in the physics of the BCS-BEC crossover with trapped Fermi atoms is to identify characteristic properties of the superfluid phase. Recently, a condensate fraction was measured on the BCS side of the crossover by sweeping the system in a fast (nonadiabatic) way from the BCS to the Bose-Einstein condensation (BEC) sides, thus "projecting" the initial many-body state onto a molecular condensate. We analyze here the theoretical implications of these projection experiments, by identifying the appropriate quantum-mechanical operator associated with the measured quantities and relating them to the many-body correlations occurring in the BCS-BEC crossover.
View Article and Find Full Text PDFTheoretical predictions for the Bardeen-Cooper-Schrieffer-Bose-Einstein condensation crossover of trapped Fermi atoms are compared with recent experimental results for the density profiles of 6Li. The calculations rest on a single theoretical approach that includes pairing fluctuations beyond mean-field. Excellent agreement with experimental results is obtained.
View Article and Find Full Text PDFWe consider the BCS-BEC (Bose-Einstein-condensate) crossover for a system of trapped Fermi atoms at finite temperature, both below and above the superfluid critical temperature, by including fluctuations beyond mean field. We determine the superfluid critical temperature and the pair-breaking temperature as functions of the attractive interaction between Fermi atoms, from the weak- to the strong-coupling limit (where bosonic molecules form as bound-fermion pairs). Density profiles in the trap are also obtained for all temperatures and couplings.
View Article and Find Full Text PDFSingle-particle spectra are calculated in the superconducting state for a fermionic system with an attractive interaction, as functions of temperature and coupling strength from weak to strong. The fermionic system is described by a single-particle self-energy that includes pairing-fluctuation effects in the superconducting state. The theory reduces to the ordinary BCS approximation in weak coupling and to the Bogoliubov approximation for the composite bosons in strong coupling.
View Article and Find Full Text PDFWe derive the time-independent Gross-Pitaevskii equation at zero temperature for condensed bosons, which form as bound-fermion pairs when the mutual fermionic attractive interaction is sufficiently strong, from the strong-coupling limit of the Bogoliubov-de Gennes equations that describe superfluid fermions in the presence of an external potential. Three-body corrections to the Gross-Pitaevskii equation are also obtained by our approach. Our results are relevant to the recent advances with ultracold fermionic atoms in a trap.
View Article and Find Full Text PDFPhys Rev Lett
September 2002
We determine the magnetic-field dependence of the pseudogap closing temperature T* within a precursor superconductivity scenario. Detailed calculations with an anisotropic lattice model with d-wave superconductivity account for a recently determined experimental relation in BSCCO between the pseudogap closing field and the pseudogap temperature at zero field, as well as for the weak initial dependence of T* at low fields. Our results indicate that the available experimental data are fully compatible with a superconducting origin of the pseudogap in cuprate superconductors.
View Article and Find Full Text PDFPhys Rev B Condens Matter
November 1995
Phys Rev B Condens Matter
March 1994
Phys Rev B Condens Matter
April 1992
Phys Rev B Condens Matter
October 1991