Introduction: The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies.
Areas Covered: The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications.
Fluorescent dyes (especially photoconvertible cyanine dyes) are traditionally used as labels to study single-cell or cell-group interactions and migration. Nevertheless, their application has some disadvantages, such as cytotoxicity and dye transfer between cells during co-cultivation. The latter can lead to serious distortions in research results.
View Article and Find Full Text PDFThe study of human neural cells, their behaviour and migration are important areas of research in the biomedical field, particularly for potential therapeutic applications. The safety of using neural cells in therapy is still a concern due to a lack of information on long-term changes that may occur. While current methods of cell tracing explore gene manipulations, we elaborate approaches to cell marking with no genetic interference.
View Article and Find Full Text PDFArterial delivery to the kidney offers significant potential for targeted accumulation and retention of cells, genetic material, and drugs, both in free and encapsulated forms, because the entire dose passes through the vessels feeding this organ during the first circulation of blood. At the same time, a detailed study on the safety and effectiveness of developed therapies in a large number of experimental animals is required. Small laboratory animals, especially mice, are the most sought-after in experimental and preclinical testing due to their cost-effectiveness.
View Article and Find Full Text PDFReliable cell labeling and tracking techniques are imperative for elucidating the intricate and ambiguous interactions between mesenchymal stromal cells (MSCs) and tumors. Here, we explore fluorescent photoconvertible nanoengineered vesicles to study mMSC migration in brain tumors. These 3 μm sized vesicles made of carbon nanoparticles, Rhodamine B (RhB), and polyelectrolytes are readily internalized by cells.
View Article and Find Full Text PDFTracing individual cell pathways among the whole population is crucial for understanding their behavior, cell communication, migration dynamics, and fate. Optical labeling is one approach for tracing individual cells, but it typically requires genetic modification to induce the generation of photoconvertible proteins. Nevertheless, this approach has limitations and is not applicable to certain cell types.
View Article and Find Full Text PDFThe use of plants such as giant hogweed as raw materials for the manufacture of dosage forms has been little explored. In this study, we utilized furanocoumarins from the Heracleum sosnowskyi plant to create an experimental emulsion dosage form (EmFHS). The EmFHS was finely dispersed (481.
View Article and Find Full Text PDFEffective treatment of drug-resistant bacteria infected wound has been a longstanding challenge for healthcare systems. In particular, the development of novel strategies for controllable delivery and smart release of antimicrobial agents is greatly demanded. Herein, the design of biodegradable microcapsules carrying bactericidal gold nanoclusters (AuNCs) as an attractive platform for the effective treatment of drug-resistant bacteria infective wounds is reported.
View Article and Find Full Text PDFNatural materials are anisotropic. Delivery systems occurring in nature, such as viruses, blood cells, pollen, and many others, do have anisotropy, while delivery systems made artificially are mostly isotropic. There is apparent complexity in engineering anisotropic particles or capsules with micron and submicron sizes.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2023
Complex-structured polymeric microparticles hold significant promise as an advance in next-generation medicine mostly due to demand from developing targeted drug delivery. However, the conventional methods for producing these microparticles of defined size, shape, and sophisticated composition often face challenges in scalability, reliance on specialized components such as micro-patterned templates, or limited control over particle size distribution and cargo (functional payload) release kinetics. In this study, we introduce a novel and reliably scalable approach for manufacturing microparticles of defined structures and sizes with variable parameters.
View Article and Find Full Text PDFThe behavior and migration of human mesenchymal stromal cells (hMSCs) are focal points of research in the biomedical field. One of the major aspects is potential therapy using hMCS, but at present, the safety of their use is still controversial owing to limited data on changes that occur with hMSCs in the long term. Fluorescent photoconvertible proteins are intensively used today as "gold standard" to mark the individual cells and study single-cell interactions, migration processes, and the formation of pure lines.
View Article and Find Full Text PDFCorticosteroids are widely used as an anti-inflammatory treatment for eye inflammation, but the current methods used in clinical practice for delivery are in the form of eye drops which is usually complicated for patients or ineffective. This results in an increase in the risk of detrimental side effects. In this study, we demonstrated proof-of-concept research for the development of a contact lens-based delivery system.
View Article and Find Full Text PDFA stimuli-responsive polymeric three-dimensional microstructured film (PTMF) is a 3D structure with an array of sealed chambers on its external surface. In this work, we demonstrate the use of PTMF as a laser-triggered stimulus-response system for local in vivo targeted blood vessels stimulation by vasoactive substances. The native vascular networks of the mouse mesentery were used as model tissues.
View Article and Find Full Text PDFTranscutaneous immunization receives much attention due to the recognition of a complex network of immunoregulatory cells in various layers of the skin. The elaboration of non-invasive needle-free approaches towards antigen delivery holds especially great potential here while searching for a hygienically optimal vaccination strategy. Here, we report on a novel protocol for transfollicular immunization aiming at delivery of an inactivated influenza vaccine to perifollicular antigen presenting cells without disrupting the stratum corneum integrity.
View Article and Find Full Text PDFComplex immunosuppressive therapy is prescribed in medical practice to patients with glomerulonephritis to help them overcome symptoms and prevent chronic renal failure. Such an approach requires long-term systemic administration of strong medications, which causes severe side effects. This work shows the efficiency of polymer capsule accumulation (2.
View Article and Find Full Text PDFFluorescent photoconvertible materials and molecules have been successfully exploited as bioimaging markers and cell trackers. Recently, the novel fluorescent photoconvertible polymer markers have been developed that allow the long-term tracking of individual labeled cells. However, it is still necessary to study the functionality of this type of fluorescent labels for various operating conditions, in particular for commonly used discrete wavelength lasers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
A new promising trend in personalized medicine is the use of autologous cells (macrophages or stem cells) for cell-based therapy and also as a "Trojan horse" for targeted delivery of a drug carrier. The natural ability of macrophages for chemotaxis allows them to deliver cargo to the damaged area, significantly reducing side effects on healthy organ tissues. Therefore, it is important to develop tools to track their behavior in the organism.
View Article and Find Full Text PDFDrug-eluting films made of bioresorbable polymers are a widely used tool of modern personalized medicine. However, most currently existing methods of producing coatings do not go beyond the laboratory, as they have low encapsulation efficiency and/or difficulties in scaling up. The PLACE (Printed Layered Adjustable Cargo Encapsulation) technology proposed in this article uses an additive approach for film manufacturing.
View Article and Find Full Text PDFBladder neck contracture (BNC) is a complication of the surgical treatment of benign and malignant prostate conditions and is associated with the partial or complete blockage of urination. Correction of this condition usually requires repeated surgical intervention, which does not guarantee recovery. Balloon dilation is a minimally invasive alternative to the surgical dissection of tissues; however, it significantly reduces the patient's quality of life.
View Article and Find Full Text PDFIn a modern high-tech medicine, drug-eluting polymer coatings are actively used to solve a wide range of problems, including the prevention of post-surgery infection, inflammatory, restenosis, thrombosis and many other implant-associated complications. For major assumptions, the drug elution mechanism is considered mainly to be driven by the degradation of the polymer matrix. This process is very environmentally dependent, unpredictable and often leads to a non-linear drug release kinetic.
View Article and Find Full Text PDFEngineering of colloidal particles and capsules despite substantial progress is still facing a number of unsolved issues including low loading capacity, non-uniform size and shape of carriers, tailoring different functionalities and versatility to encapsulated cargo. In this work, we propose a method for defined-shaped functionally asymmetric polymer capsule fabrication based on a soft lithography approach. The developed capsules consist of two classes of polymers - the main part "cup" is made out of polyelectrolyte multilayers (PAH-PSS) and "lid" is made of biodegradable polyether (PLGA).
View Article and Find Full Text PDFThe problem of reducing the side effects associated with drug distribution throughout the body in the treatment of various kidney diseases can be solved by effective targeted drug delivery. The method described herein involves injection of a drug encapsulated in polyelectrolyte capsules to achieve prolonged local release and long-term capillary retention of several hours while these capsules are administered via the renal artery. The proposed method does not imply disruption (puncture) of the renal artery or aorta and is suitable for long-term chronic experiments on mice.
View Article and Find Full Text PDFInt J Mol Sci
April 2022
In this study, we developed iron oxide nanoparticles stabilised with oleic acid/sodium oleate that could exert therapeutic effects for curing tumours via magnetic hyperthermia. A suspension of iron oxide nanoparticles was produced and characterised. The toxicity of the synthesised composition was examined in vivo and found to be negligible.
View Article and Find Full Text PDFThe outstanding optical properties and multiphoton absorption of lead halide perovskites make them promising for use as fluorescence tags in bioimaging applications. However, their poor stability in aqueous media and biological fluids significantly limits their further use for and applications. In this work, we have developed a universal approach for the encapsulation of lead halide perovskite nanocrystals (PNCs) (CsPbBr and CsPbI) as water-resistant fluorescent markers, which are suitable for fluorescence bioimaging.
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2022
A number of preclinical and clinical studies have demonstrated the efficiency of mesenchymal stromal cells to serve as an excellent base for a cell-mediated drug delivery system. Cell-based targeted drug delivery has received much attention as a system to facilitate the uptake a nd transfer of active substances to specific organs and tissues with high efficiency. Human mesenchymal stem cells (MSCs) are attracting increased interest as a promising tool for cell-based therapy due to their high proliferative capacity, multi-potency, and anti-inflammatory and immunomodulatory properties.
View Article and Find Full Text PDF