Structural analysis of cellulose nanofibril (CNF) films remains challenging due to the stochastic assembly of fibres and presence of nanopores. This limits our ability to link the film structures to their properties, restricting their commercial use. While X-ray micro-computed tomography (μCT) is a powerful technique to map the structure of traditional and commercial paper, there has been limited success in its application for CNF films due to the poor contrast between pores and material, making the reconstructed images difficult to segment and analyse.
View Article and Find Full Text PDFEGFR status assessment is mandatory for adjuvant decision-making of resected stage IB-IIIA non-squamous non-small cell lung cancer (NS-NSCLC). It is questionable whether single-gene RT-PCR versus next-generation sequencing (NGS) should be used for this evaluation. Moreover, co-occurring mutations have an impact on tumor behavior and may influence future therapeutic decision-making.
View Article and Find Full Text PDFThe environmental concerns about petroleum-based polymers drive the search for sustainable alternatives. This paper investigates sustainable cellulose nanocrystal (CNC) films for packaging applications. CNC films are transparent and provide an excellent barrier against oxygen with moderate performance against water vapor.
View Article and Find Full Text PDFPaper-based packaging can offer a sustainable replacement for plastics. However, paper provides a poor barrier to water, oxygen and moisture. This study presents a novel renewable lignocellulosic composite made from a hydrophobic photo-reversible coating deposited onto a cellulose nanofiber film that has improved barrier properties and can be reprocessed.
View Article and Find Full Text PDFRecently developed imaging techniques have been used to examine the redistribution of human red blood cells and comparator particles dispersed in carrier fluids within evaporating droplets. We demonstrate that progressive gelation initiates along an annular front, isolating a central pool that briefly remains open to particulate advection before gelation completes across the droplet center. Transition to an elastic solid is evidenced by cracking initiating proximal to front locations.
View Article and Find Full Text PDFDespite significant research into cellulose nanofibril (CNF) films as substitutes to synthetic plastic materials, commercial applications remain very limited. One major hindrance is the poor water vapor barrier properties of CNF films compared to polyolefins, a critical property for product protection, such as food safety and preservation. To date, it is unknown whether full moisture barrier properties can be achieved with materials made by the assembly of nanofibers and fibrils.
View Article and Find Full Text PDFContrast matching by isotopic exchange in cellulose allows visualizing functional groups, biomolecules, polymers and nanoparticles embedded in cellulosic composites. This isotopic exchange varies the scattering length density of cellulose to match its contrast with the background network. Here, contrast matching of microcrystalline-cellulose (MCC) and the functionalized nanocellulose-fiber (CNF) and cellulose nanocrystals (CNC) are elucidated by small angle neutron scattering (SANS).
View Article and Find Full Text PDFAcute radiation syndrome encompasses a spectrum of pathological manifestations resulting from exposure to high doses of ionizing radiation. This syndrome typically progresses through three stages with a prodromal phase, a latency phase and a critical phase. Each of them varies in intensity and duration depending on the absorbed dose of radiation.
View Article and Find Full Text PDFAdenosine triphosphate (ATP) is a central molecule of organisms and is involved in many biological processes. It is also widely used in biocatalytic processes, especially as a substrate and precursor of many cofactors─such as nicotinamide adenine dinucleotide phosphate (NADP(H)), coenzyme A (CoA), and -adenosylmethionine (SAM). Despite its great scientific interest and pivotal role, its use in industrial processes is impeded by its prohibitory cost.
View Article and Find Full Text PDFThis article describes data related to the research paper "Simplification of gel point characterization of cellulose nano and microfiber suspensions" [1]. The characterization of fibrillated celluloses that include cellulose nano and microfibrils (CMNFs) is a challenge for their production on an industrial scale, requiring easy techniques that control their quality and reproducibility. Gel point is a convenient parameter commonly used to estimate the aspect ratio (AR) of CMNFs.
View Article and Find Full Text PDFThe extracellular matrix (ECM) is the fundamental acellular element of human tissues, providing their mechanical structure while delivering biomechanical and biochemical signals to cells. Three-dimensional (3D) tissue models commonly use hydrogels to recreate the ECM and support the growth of cells as organoids and spheroids. Collagen-nanocellulose (COL-NC) hydrogels rely on the blending of both polymers to design matrices with tailorable physical properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2024
The controlled grafting of polymers from small- and macro-molecular substrates is an essential process for many advanced polymer applications. This usually requires the pre-functionalisation of substrates with an appropriate functional group, such as a RAFT agent or ATRP initiator, which requires additional synthetic steps. In this paper, we describe the direct grafting of RAFT polymers from carboxylate containing small molecules and polymers via photochemical radical decarboxylation.
View Article and Find Full Text PDFThe production of hydrophobic and oil resistant cellulosic fibers usually requires severe chemical treatments and generates toxic by-products. Alternative approaches such as biocatalysis use milder conditions; lipase-catalyzed methods for grafting nanocellulose with hydrophobic ester moieties have been reported. Here, we investigate the lipase-catalyzed esterification of cellulose fibers, in native form or pretreated with 1,4-β-glucanases, and cellulose nanocrystals (CNC) in solvent-free conditions.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2023
Hypothesis: The iridescent optical properties of films made of cellulose nanocrystals (CNC) are controlled by the pitch and range of the chiral nematic structures. These are further tuned with the addition of electrolyte.
Experiments: Electrolyte type, valency and concentration were varied.
Nucleation, growth, and transformation of chirality in nanomaterial systems is a growing research topic with broad interest in tunable and configurable chiroptical materials. Similar to other one-dimensional nanomaterials, cellulose nanocrystals (CNCs), which are nanorods of naturally abundant biopolymer cellulose, display chiral or cholesteric liquid crystal (LC) phases in the form of tactoids. However, the nucleation and growth of the cholesteric CNC tactoids to equilibrium chiral structures and their morphological transformations are yet to be critically assessed.
View Article and Find Full Text PDFOxidative treatment of human red blood cells (RBCs) prior to freeze-drying appears to stabilize the RBCs to withstand dried storage at room temperature. To better understand the effects of oxidation and freeze-drying/rehydration on RBC lipids and proteins, single-cell measurements were performed by synchrotron-based Fourier transform infrared (FTIR) microspectroscopy 'live-cell' (unfixed) analysis. Lipid and protein spectral data of -butyl hydroperoxide (TBHP)-oxidized RBCs (oxRBCs), FDoxRBCs and control (untreated) RBCs were compared using principal component analysis (PCA) and band integration ratios.
View Article and Find Full Text PDFFuture dietary protein demand will focus more on plant-based sources than animal-based products. In this scenario, legumes and pulses (lentils, beans, chickpeas, etc.) can play a crucial role as they are one of the richest sources of plant proteins with many health benefits.
View Article and Find Full Text PDFBackground: In the phase III PAOLA-1 study, the addition of maintenance olaparib to bevacizumab in patients with newly diagnosed high-grade ovarian cancer (HGOC) resulted in prolonged progression-free survival (PFS), particularly for homologous recombination deficiency-positive tumors, including those with a BRCA mutation (BRCAm). The magnitude of benefit from olaparib and bevacizumab according to the location of mutation in BRCA1/BRCA2 remains to be explored.
Patients And Methods: Patients with advanced-stage HGOC responding after platinum-based chemotherapy + bevacizumab received maintenance therapy bevacizumab (15 mg/kg q3w for 15 months) + either olaparib (300 mg b.
Front Bioeng Biotechnol
November 2022
A new generation of rapid, easy to use and robust colorimetric point of care (POC) nanocellulose coated-paper sensors to measure glucose concentration in blood is presented in this study. The cellulose gel containing the enzyme with co-additive is coated and dried onto a paper substrate. Nanocellulose gel is used to store, immobilize and stabilize enzymes within its structure to prolong enzyme function and enhance its availability.
View Article and Find Full Text PDFHypothesis The self-assembly (SA) of cellulose nanocrystals (CNC) in suspensions is important both from the fundamental and advanced technology development perspective. CNC of different lengths self-assemble differently in suspensions by balancing attractive and repulsive interactions which depends strongly on morphology, surface chemistry and concentrations. Experiments Two different commercial CNC samples (CNC-M and CNC-C) of different lengths were dispersed in Milli-Q water at different concentrations (0.
View Article and Find Full Text PDFHypothesis: The optical properties and humidity response of iridescent films made of cellulose nanocrystal (CNC) and polyethylene glycol (PEG) can be tailored by the incorporation of electrolytes chosen based on specific ion effects (SIE).
Experiments: A series of inorganic salts comprising five different cations and five anions based on the Hofmeister series were mixed with CNC/PEG suspensions, followed by an air-dried process into iridescent solid films. These films were tested in changing relative humidity (RH) environments from 30% to 90% and their photonic properties and mass change monitored.
The role of amphiphilicity in polysaccharide-based superabsorbent polymers is paramount in determining material properties. While the performance of freeze-dried polymers is improved by maximizing hydrophilicity, this may not be the case for evaporative-dried polymers. In this study, four diglycidyl ether crosslinkers, with varying chain lengths and amphiphilicities, were used to synthesize a series of evaporative-dried carboxymethyl cellulose-based superabsorbent films.
View Article and Find Full Text PDFBackground And Objectives: Pre-transfusion antibody screening requires the detection and identification of immunoglobulin G (IgG) antibodies against red blood cells (RBCs). Using the indirect antiglobulin test (IAT), plasma-RBC solutions are incubated at 37°C in gel cards, typically by heating block technology. Here, we apply the newly developed laser incubation method to detect RBC alloantibodies in the plasma from human donors.
View Article and Find Full Text PDFPlastic packaging is causing a serious environmental concern owing to its difficulty in degrading and micro-particulates' emissions. Developing biodegradable films has gained research attention to overcome ecological and health issues associated with plastic based packaging. One alternative substitute for petroleum-based plastic is nanocellulose based films, having distinguishing characteristics such as biodegradability, renewability, and non-toxicity.
View Article and Find Full Text PDF