Natural products have long been an important source of inspiration for medicinal chemistry and drug discovery. In the cosmetic field, they remain the major elements of the composition and serve as marketing asset. Recent research showed the implication of salt-inducible kinases on the melanin production in skin via MITF regulation.
View Article and Find Full Text PDFJ Chem Inf Model
November 2021
A new methodology for classifying fragment combinations and characterizing pseudonatural products (PNPs) is described. The source code is based on open-source tools and is organized as a Python package. Tasks can be executed individually or within the context of scalable, robust workflows.
View Article and Find Full Text PDFNatural product structure and fragment-based compound development inspire pseudo-natural product design through different combinations of a given natural product fragment set to compound classes expected to be chemically and biologically diverse. We describe the synthetic combination of the fragment-sized natural products quinine, quinidine, sinomenine, and griseofulvin with chromanone or indole-containing fragments to provide a 244-member pseudo-natural product collection. Cheminformatic analyses reveal that the resulting eight pseudo-natural product classes are chemically diverse and share both drug- and natural product-like properties.
View Article and Find Full Text PDFDrug discovery is a challenging and expensive field. Hence, novel in silico tools have been developed in early discovery stage to identify and prioritize novel molecules with suitable physicochemical properties. In many in silico drug design projects, molecular databases are screened by virtual screening tools to search for potential bioactive molecules.
View Article and Find Full Text PDFOver the past decades, virtual screening has proved itself to be a valuable asset to identify new bioactive compounds. The vast majority of commonly used techniques can be described in three steps: pre-processing the dataset i. e.
View Article and Find Full Text PDFReentry in nervous systems is the ongoing bidirectional exchange of signals along reciprocal axonal fibers linking two or more brain areas. The hypothesis that reentrant signaling serves as a general mechanism to couple the functioning of multiple areas of the cerebral cortex and thalamus was first proposed in 1977 and 1978 (Edelman, 1978). A review of the amount and diversity of supporting experimental evidence accumulated since then suggests that reentry is among the most important integrative mechanisms in vertebrate brains (Edelman, 1993).
View Article and Find Full Text PDFThe Dynamic Core and Global Workspace hypotheses were independently put forward to provide mechanistic and biologically plausible accounts of how brains generate conscious mental content. The Dynamic Core proposes that reentrant neural activity in the thalamocortical system gives rise to conscious experience. Global Workspace reconciles the limited capacity of momentary conscious content with the vast repertoire of long-term memory.
View Article and Find Full Text PDFRecent recordings of place field activity in rodent hippocampus have revealed correlates of current, recent past, and imminent future events in spatial memory tasks. To analyze these properties, we used a brain-based device, Darwin XI, that incorporated a detailed model of medial temporal structures shaped by experience-dependent synaptic activity. Darwin XI was tested on a plus maze in which it approached a goal arm from different start arms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2005
Analyzing neural dynamics underlying complex behavior is a major challenge in systems neurobiology. To meet this challenge through computational neuroscience, we have constructed a brain-based device (Darwin X) that interacts with a real environment, and whose behavior is guided by a simulated nervous system incorporating detailed aspects of the anatomy and physiology of the hippocampus and its surrounding regions. Darwin X integrates cues from its environment to solve a spatial memory task.
View Article and Find Full Text PDFSleep is a ubiquitous component of animal life, and prolonged sleep deprivation is fatal in both vertebrates and invertebrates. The physiologic function of sleep, however, is not known. We propose here that sleep provides a period of time necessary to reapportion resources within neurons and neural systems that become sub-optimally distributed during active waking.
View Article and Find Full Text PDFA neuronal network inspired by the anatomy of the cerebral cortex was simulated to study the self-organization of spiking neurons into neuronal groups. The network consisted of 100 000 reentrantly interconnected neurons exhibiting known types of cortical firing patterns, receptor kinetics, short-term plasticity and long-term spike-timing-dependent plasticity (STDP), as well as a distribution of axonal conduction delays. The dynamics of the network allowed us to study the fine temporal structure of emerging firing patterns with millisecond resolution.
View Article and Find Full Text PDFThis paper presents evidence indicating that the signals generated by neural responses to visual input can be either enhanced by increasing or suppressed by decreasing the area of the stimuli to which attention is directed. We used magnetoencephalography (MEG) to measure the frequency-tagged steady-state visual evoked responses of 11 subjects presented with two superimposed images flickering at different frequencies. Each image consisted of seven parallel bars of equal length; in any image, all bars were either red or green and either horizontal or vertical.
View Article and Find Full Text PDFDegeneracy, the ability of elements that are structurally different to perform the same function or yield the same output, is a well known characteristic of the genetic code and immune systems. Here, we point out that degeneracy is a ubiquitous biological property and argue that it is a feature of complexity at genetic, cellular, system, and population levels. Furthermore, it is both necessary for, and an inevitable outcome of, natural selection.
View Article and Find Full Text PDFExcitatory synaptic activity can evoke transient and substantial elevations of postsynaptic calcium. Downstream effects of elevated calcium include the activation of the calcium-dependent protease calpain. We have developed a reagent that identifies dendritic spines in which calpain has been activated.
View Article and Find Full Text PDFEvidence that excitatory amino acids act via N-methyl-D-aspartate (NMDA) receptors to evoke the release of catecholamines from axonal terminals and synaptosomes has been used to argue for the presence of pre-synaptic NMDA receptors. NMDA receptor agonists also generate nitric oxide (NO) which rapidly diffuses through neural tissue. We find that exogenously applied NO evokes [3H]-dopamine release from cultured neurons.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 1992
The genomic sequences encoding a chicken Ca(2+)-dependent cell adhesion molecule (K-CAM) were recently found to be located approximately 600 base pairs upstream from the translation initiation site of a homologous protein, liver CAM. The sizes of 11 exons of the K-CAM gene are almost identical to those in the L-CAM (liver cell-adhesion molecule) gene with exon-intron junctions occurring at exactly equivalent positions. The sizes and sequences of most introns were, however, much more dissimilar.
View Article and Find Full Text PDFCereb Cortex
September 1992
In the vertebrate central nervous system, afferent axons find their appropriate target structures under the influence of local environmental cues. In many target regions, appropriate patterns of activity in the afferents are also required to establish normal mappings between the source cells and the target region. Specific mappings arise in these targets because temporal contiguity in firing is somehow transformed into spatial contiguity of synaptic contacts.
View Article and Find Full Text PDFSeveral observations suggest that the Ca2(+)-dependent postsynaptic release of nitric oxide (NO) may be important in the formation and function of the vertebrate nervous system. We explore here the hypothesis that the release of NO and its subsequent diffusion may be critically related to three aspects of nervous system function: (i) synaptic plasticity and long-term potentiation in certain regions of the adult nervous system, (ii) the control of cerebral blood flow in such regions, and (iii) the establishment and activity-dependent refinement of axonal projections during the later stages of development. In this paper, we detail and analyze the basic assumptions underlying this NO hypothesis and describe a computer simulation of a minimal version of the hypothesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 1989
Recent experiments have revealed tightly synchronized oscillatory discharges in local assemblies of cortical neurons as well as phase coherency of oscillations at distant cortical sites. These findings are consistent with the theory of neuronal group selection, a population theory of brain function that is based on the properties of local groups of neurons. A set of computer simulations shows that cooperative interactions within and among neuronal groups can generate the observed phenomena.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 1969
An exonuclease which specifically degrades double-standard DNA has been isolated from rabbit tissues. The enzyme has an approximate molecular weight of 42,000, requires a divalent metal ion as cofactor, and attacks DNA at the 5'-terminal ends, thereby liberating 5'-mononucleotides. It degrades several synthetic polydeoxynucleotides of single repeating base sequences more rapidly than DNA from natural sources.
View Article and Find Full Text PDF