The reaction coefficient for hydrogen/deuterium (H/D) exchange and the diffusion of hydrated excess protons within amorphous solid water (ASW) are characterized as a function of temperature. For these experiments, water films are deposited on a Pt(111) substrate at 108 K, and reactions with pre-adsorbed hydrogen atoms produce hydrated protons. Upon heating, protons diffuse within the water, and H/D exchange occurs when they encounter D2O probe molecules deposited in the films.
View Article and Find Full Text PDFWater shows anomalous properties that are enhanced upon supercooling. The unusual behavior is observed in both H2O and D2O, however, with different temperature dependences for the two isotopes. It is often noted that comparing the properties of the isotopes at two different temperatures (i.
View Article and Find Full Text PDFExperiments investigating the properties of deeply supercooled liquid water are needed to develop a comprehensive understanding of water's anomalous properties. One approach involves transiently heating nanoscale water films into the supercooled region for several nanoseconds at a time and then interrogating the water films after they have quenched to cryogenic temperatures. To relate the results obtained with this approach to other experiments and simulations on supercooled water, it is important to understand how closely the quenched structure tracks the (metastable) equilibrium structure of water as a function of the transient heating temperature.
View Article and Find Full Text PDFThe interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO (a-TiO) is of particular interest. Here, we combine experiments and theory to study the dissociation of water on bulk-reduced a-TiO(101).
View Article and Find Full Text PDFUnderstanding the properties of supercooled water is important for developing a comprehensive theory for liquid water and amorphous ices. Because of rapid crystallization for deeply supercooled water, experiments on it are typically carried out under conditions in which the temperature and/or pressure are rapidly changing. As a result, information on the structural relaxation kinetics of supercooled water as it approaches (metastable) equilibrium is useful for interpreting results obtained in this experimentally challenging region of phase space.
View Article and Find Full Text PDFOver the last several decades, there have been several studies examining the radiation stability of boehmite and other aluminum oxyhydroxides, yet less is known about the impact of radiation on boehmite dissolution. Here, we investigate radiation effects on the dissolution behavior of boehmite by employing liquid-phase transmission electron microscopy (LPTEM) and varying the electron flux on the samples consisting of either single nanoplatelets or aggregated stacks. We show that boehmite nanoplatelets projected along the [010] direction exhibit uniform dissolution with a strong dependence on the electron dose rate.
View Article and Find Full Text PDFWe have examined the structure of supercooled liquid DO as a function of temperature between 185 and 255 K using pulsed laser heating to rapidly heat and cool the sample on a nanosecond timescale. The liquid structure can be represented as a linear combination of two structural motifs, with a transition between them described by a logistic function centered at 218 K with a width of 10 K. The relaxation to a metastable state, which occurred prior to crystallization, exhibited nonexponential kinetics with a rate that was dependent on the initial structural configuration.
View Article and Find Full Text PDFUnderstanding radiation-induced chemical and physical transformations at material interfaces is important across diverse fields, but experimental approaches are often limited to either ex situ observations or in situ electron microscopy or synchrotron-based methods, in which cases the radiation type and dose are inextricably tied to the imaging basis itself. In this work, we overcome this limitation by demonstrating integration of an x-ray source with an atomic force microscope to directly monitor radiolytically driven interfacial chemistry at the nanoscale. We illustrate the value of in situ observations by examining effects of radiolysis on material adhesion forces in aqueous solution as well as examining the production of alkali nitrates at the interface between an alkali halide crystal surface and air.
View Article and Find Full Text PDFWe measure the isothermal crystallization kinetics of amorphous acetonitrile films using molecular beam dosing and reflection adsorption infrared spectroscopy techniques. Experiments on a graphene covered Pt(111) substrate revealed that the crystallization rate slows dramatically during long time periods and that the overall kinetics cannot be described by a simple application of the Avrami equation. The crystallization kinetics also have a thickness dependence with the thinner films crystallizing much slower than the thicker ones.
View Article and Find Full Text PDFRadiation driven reactions at mineral/air interfaces are important to the chemistry of the atmosphere, but experimental constraints (e.g. simultaneous irradiation, in situ observation, and environmental control) leave process understanding incomplete.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2021
The origin of water's anomalous properties has been debated for decades. Resolution of the problem is hindered by a lack of experimental data in a crucial region of temperatures, , and pressures where supercooled water rapidly crystallizes-a region often referred to as "no man's land." A recently developed technique where water is heated and cooled at rates greater than 10 K/s now enables experiments in this region.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2020
Anatase TiO is used extensively in a wide range of catalytic and photocatalytic processes and is a promising catalyst for hydrogen production. Here, we show that molecular hydrogen was produced from bridging hydroxyls (HO) on the (101) surface of single-crystal anatase (TiO(101)). This stands in contrast to rutile TiO(110), where HO pairs react to form HO.
View Article and Find Full Text PDFA fundamental understanding of the unusual properties of water remains elusive because of the limited data at the temperatures and pressures needed to decide among competing theories. We investigated the structural transformations of transiently heated supercooled water films, which evolved for several nanoseconds per pulse during fast laser heating before quenching to 70 kelvin (K). Water's structure relaxed from its initial configuration to a steady-state configuration before appreciable crystallization.
View Article and Find Full Text PDFThe growth rate of crystalline ice (CI) in amorphous solid water (ASW) films was investigated using reflection absorption infrared spectroscopy. Two different experiments were set up to measure rates of the crystallization front propagation from the underlying crystalline template upward and from the vacuum interface downward. In one set of experiments, layers of ASW (5% DO in HO) were grown on a CI template and capped with a decane layer.
View Article and Find Full Text PDFThe crystallization kinetics of transiently heated, nanoscale water films were investigated for 188 K < T < 230 K, where T is the maximum temperature obtained during a heat pulse. The water films, which had thicknesses ranging from approximately 15-30 nm, were adsorbed on a Pt(111) single crystal and heated with ∼10 ns laser pulses, which produced heating and cooling rates of ∼10-10 K/s in the adsorbed water films. Because the ice growth rates have been measured independently, the ice nucleation rates could be determined by modeling the observed crystallization kinetics.
View Article and Find Full Text PDFIsotopic exchange reactions in mixed DO and HO amorphous solid water (ASW) films were investigated using reflection absorption infrared spectroscopy. Nanoscale films composed of 5% DO in HO were deposited on Pt(111) and graphene covered Pt(111) substrates. At 130 K, we find that the reaction is strongly dependent on the substrate with the H/D exchange being significantly more rapid on the Pt(111) surface than on graphene.
View Article and Find Full Text PDFPhys Chem Chem Phys
May 2018
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on an α-Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D2, O2 and D2O) and the total sputtering yield increased with increasing D2O coverage up to ∼15 water monolayers (i.e.
View Article and Find Full Text PDFBoehmite (-AlOOH) and gibbsite (-Al-(OH)) are important archetype (oxy)hydroxides of aluminum in nature that also play diverse roles across a plethora of industrial applications. Developing the ability to understand and predict the properties and characteristics of these materials, on the basis of their natural growth or synthesis pathways, is an important fundamental science enterprise with wide-ranging impacts. The present study describes bulk and surface characteristics of these novel materials in comprehensive detail, using a collectively sophisticated set of experimental capabilities, including a range of conventional laboratory solids analyses and national user facility analyses such as synchrotron X-ray absorption and scattering spectroscopies as well as small-angle neutron scattering.
View Article and Find Full Text PDFWe have investigated the nucleation and growth of crystalline ice in 0.24 μm thick, supercooled water films adsorbed on Pt(111). The films were transiently heated with ∼10 ns infrared laser pulses, which produced typical heating and cooling rates of ∼10-10 K/s.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2017
The adsorption and photochemistry of CO on rutile TiO(110) are studied with scanning tunneling microscopy (STM), temperature-programmed desorption, and angle-resolved photon-stimulated desorption (PSD) at low temperatures. Site occupancies, when weighted by the concentration of each kind of adsorption site on the reduced surface, show that the adsorption probability is the highest for the bridging oxygen vacancies (V). The probability distribution for the different adsorption sites corresponds to very small differences in CO adsorption energies (<0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2016
Understanding deeply supercooled water is key to unraveling many of water's anomalous properties. However, developing this understanding has proven difficult due to rapid and uncontrolled crystallization. Using a pulsed-laser-heating technique, we measure the growth rate of crystalline ice, G(T), for 180 K < T < 262 K, that is, deep within water's "no man's land" in ultrahigh-vacuum conditions.
View Article and Find Full Text PDFA pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV.
View Article and Find Full Text PDFThe melting and wetting of nanoscale crystalline ice films on Pt(111) that are transiently heated above the melting point in ultrahigh vacuum (UHV) using nanosecond laser pulses are studied with infrared reflection absorption spectroscopy and Kr temperature-programmed desorption. The as-grown crystalline ice films consist of nanoscale ice crystallites embedded in a hydrophobic water monolayer. Upon heating, these crystallites melt to form nanoscale droplets of liquid water.
View Article and Find Full Text PDFWe have examined the adsorption of the weakly bound species N2, O2, CO, and Kr on the (√37×√37)R25.3° water monolayer on Pt(111) using a combination of molecular beam dosing, infrared reflection absorption spectroscopy, and temperature programmed desorption. In contrast to multilayer crystalline ice, the adsorbate-free water monolayer is characterized by a lack of dangling OH bonds protruding into the vacuum (H-up).
View Article and Find Full Text PDF