We investigate several representative density functional theory approaches for the calculation of relative activation energies and free energies of a set of model pericyclic reactions, some of which have been studied experimentally. In particular, we use a standard hybrid functional (B3LYP), the same hybrid functional augmented with a basis set superposition error and dispersion correction, a meta-hybrid functional developed to treat transition states and weak interactions (M06-2X), and the recently implemented random phase approximation (RPA) based on Kohn-Sham orbitals from conventional density functional theory by Furche and co-workers. We apply these methods to calculate relative activation energies and estimated free energies for the amide acetal Claisen rearrangement.
View Article and Find Full Text PDFThe ortho ester Claisen rearrangement of trisubstituted allylic alcohols exhibits significant levels of diastereoselection. In E allylic alcohols, a 1,3-diaxial interaction develops in the chairlike transition state leading to the anti isomer, rendering the reaction syn selective by a factor of 3-5 to 1. In Z allylic alcohols, the 1,3-diaxial interaction develops in the transition state leading to the syn isomer, generating an anti:syn selectivity of 6-15 to 1.
View Article and Find Full Text PDF