Background: In the traditional computed tomography (CT) simulation process, patients need to undergo CT scans before and after injection of iodine-based contrast agent, resulting in a cumbersome workflow and additional imaging dose. Contrast-enhanced spectral CT can synthesize true contrast-enhanced (TCE) images and virtual noncontrast (VNC) images in a single scan without geometric misalignment. To improve work efficiency and reduce patients' imaging dose, we studied the feasibility of using VNC images for radiotherapy treatment planning, with true noncontrast (TNC) images as references and explored its dosimetric advantages compared to using TCE images.
View Article and Find Full Text PDFIntraocular pressure (IOP) elevation is the primary risk factor and currently the main treatable factor for progression of glaucomatous optic neuropathy. In addition to direct clinical and living animal in vivo studies, ex vivo perfusion of anterior segments and whole eyes is a key technique for studying conventional outflow function as it is responsible for IOP regulation. We present well-tested experimental details, protocols, considerations, advantages, and limitations of several ex vivo model systems for studying IOP regulation.
View Article and Find Full Text PDFWhile immune-checkpoint blockade (ICB) has revolutionized treatment of metastatic melanoma over the last decade, the identification of broadly applicable robust biomarkers has been challenging, driven in large part by the heterogeneity of ICB regimens and patient and tumor characteristics. To disentangle these features, we performed a standardized meta-analysis of eight cohorts of patients treated with anti-PD-1 (n=290), anti-CTLA-4 (n=175), and combination anti-PD-1/anti-CTLA-4 (n=51) with RNA sequencing of pre-treatment tumor and clinical annotations. Stratifying by immune-high vs -low tumors, we found that surprisingly, high immune infiltrate was a biomarker for response to combination ICB, but not anti-PD-1 alone.
View Article and Find Full Text PDFThe chromosomal theory of inheritance dictates that genes on the same chromosome segregate together while genes on different chromosomes assort independently. Extrachromosomal DNAs (ecDNAs) are common in cancer and drive oncogene amplification, dysregulated gene expression and intratumoural heterogeneity through random segregation during cell division. Distinct ecDNA sequences, termed ecDNA species, can co-exist to facilitate intermolecular cooperation in cancer cells.
View Article and Find Full Text PDFPurpose: To investigate the clinical outcomes after arthroscopic chondral nail fixation for acetabular cartilage delamination (ACD) in patients with femoroacetabular impingement syndrome (FAIS), as well as the presentation of ACD on magnetic resonance imaging (MRI), at follow-up.
Methods: A retrospective review was performed between March 2021 and March 2022 at our institute. Patients undergoing primary hip arthroscopy for FAIS in whom ACD was diagnosed intraoperatively were included.
Nine undescibed abietane diterpenoid alkaloids (DAs), salviamines G‒H (1-2), isosalviamines G‒J (3-6), and miltiorramines A‒C (7-9) were isolated from the roots of Salvia miltiorrhiza. Their chemical structures including absolute configurations were elucidated by extensive spectroscopic analysis (including 1D and 2D NMR, and HRESIMS), combined with the calculated ECD method and single-crystal X-ray diffraction analysis. Among them, compounds 1-6 are unusual 20-nor- or 19,20-bisnor-abietane DAs with an oxazole ring.
View Article and Find Full Text PDFBackground: Atherosclerosis is the most common cause of cardiovascular diseases. Clinical studies indicate that loss-of-function ASGR1 (asialoglycoprotein receptor 1) is significantly associated with lower plasma cholesterol levels and reduces cardiovascular disease risk. However, the effect of ASGR1 on atherosclerosis remains incompletely understood; whether inhibition of ASGR1 causes liver injury remains controversial.
View Article and Find Full Text PDFBackground: Efgartigimod, a human immunoglobulin G (IgG)1-derived Fc fragment targeting the neonatal Fc receptor, has been developed into intravenous (IV) and subcutaneous (SC) formulations for treating generalized myasthenia gravis (gMG) and other autoimmune diseases. Data in the Chinese population were not available to date, and while both formulations have been approved in the USA, the EU, Japan and China for the treatment of gMG.
Objective: We present the pharmacokinetic, pharmacodynamic, and safety of IV and SC PH20 efgartigimod in healthy Chinese participants.
The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is on the rise, and with limited pharmacological therapy available, identification of new metabolic targets is urgently needed. Oxalate is a terminal metabolite produced from glyoxylate by hepatic lactate dehydrogenase (LDHA). The liver-specific alanine-glyoxylate aminotransferase (AGXT) detoxifies glyoxylate, preventing oxalate accumulation.
View Article and Find Full Text PDFHuntington's disease (HD) is an autosomal dominant disease caused by the expansion of cytosine-adenine-guanine (CAG) repeats in one copy of the gene (mutant HTT, mHTT). The unaffected gene encodes wild-type HTT (wtHTT) protein, which supports processes important for the health and function of the central nervous system. Selective lowering of mHTT for the treatment of HD may provide a benefit over nonselective HTT-lowering approaches, as it aims to preserve the beneficial activities of wtHTT.
View Article and Find Full Text PDFTo enhance the reaction kinetics without sacrificing activity in porous materials, one potential solution is to utilize the anisotropic distribution of pores and channels besides enriching active centers at the reactive surfaces. Herein, by designing a unique distribution of oriented pores and single crystalline array structures in the presence of abundant acid sites as demonstrated in the ZSM-5 nanorod arrays grown on monoliths, both enhanced dynamics and improved capacity are exhibited simultaneously in propene capture at low temperature within a short duration. Meanwhile, the ZSM-5 array also helps mitigate the long-chain HCs and coking formation due to the enhanced diffusion of reactants in and reaction products out of the array structures.
View Article and Find Full Text PDFThe game between therapeutic monoclonal antibodies (mAbs) and continuously emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has favored the virus, as most therapeutic mAbs have been evaded. Addressing this challenge, we systematically explored a reproducible bispecific antibody (bsAb)-dependent synergistic effect in this study. It could effectively restore the neutralizing activity of the bsAb when any of its single mAbs is escaped by variants.
View Article and Find Full Text PDFInhibition of histone lysine acetyltransferases (KATs) KAT6A and KAT6B has shown antitumor activity in estrogen receptor-positive (ER) breast cancer preclinical models. PF-07248144 is a selective catalytic inhibitor of KAT6A and KAT6B. In the present study, we report the safety, pharmacokinetics (PK), pharmacodynamics, efficacy and biomarker results from the first-in-human, phase 1 dose escalation and dose expansion study (n = 107) of PF-07248144 monotherapy and fulvestrant combination in heavily pretreated ER human epidermal growth factor receptor-negative (HER2) metastatic breast cancer (mBC).
View Article and Find Full Text PDFPINK1 loss-of-function mutations and exposure to mitochondrial toxins are causative for Parkinson's disease (PD) and Parkinsonism, respectively. We demonstrate that pathological α-synuclein deposition, the hallmark pathology of idiopathic PD, induces mitochondrial dysfunction, and impairs mitophagy as evidenced by the accumulation of the PINK1 substrate pS65-Ubiquitin (pUb). We discovered MTK458, a brain penetrant small molecule that binds to PINK1 and stabilizes its active complex, resulting in increased rates of mitophagy.
View Article and Find Full Text PDFMuscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples.
View Article and Find Full Text PDFSurgical artificial intelligence (AI) has the potential to improve patient safety and clinical outcomes. To date, training such AI models to identify tissue anatomy requires annotations by expensive and rate-limiting surgical domain experts. Herein, we demonstrate and validate a methodology to obtain high quality surgical tissue annotations through crowdsourcing of non-experts, and real-time deployment of multimodal surgical anatomy AI model in colorectal surgery.
View Article and Find Full Text PDFPrototypic receptors for human influenza viruses are N-glycans carrying α2,6-linked sialosides. Due to immune pressure, A/H3N2 influenza viruses have emerged with altered receptor specificities that bind α2,6-linked sialosides presented on extended N-acetyl-lactosamine (LacNAc) chains. Here, binding modes of such drifted hemagglutinin's (HAs) are examined by chemoenzymatic synthesis of N-glycans having C-labeled monosaccharides at strategic positions.
View Article and Find Full Text PDF