Publications by authors named "G-J Kroes"

The accurate modeling of dissociative chemisorption of molecules on metal surfaces presents an exciting scientific challenge to theorists, and is practically relevant to modeling heterogeneously catalyzed reactive processes in computational catalysis. The first important scientific challenge in the field is that accurate barriers for dissociative chemisorption are not yet available from first principles methods. For systems that are not prone to charge transfer (for which the difference between the work function of the surface and the electron affinity of the molecule is larger than 7 eV) this problem can be circumvented: chemically accurate barrier heights can be extracted with a semi-empirical version of density functional theory (DFT).

View Article and Find Full Text PDF

Density functional theory (DFT) at the generalized gradient approximation (GGA) level is often considered the best compromise between feasibility and accuracy for reactions of molecules on metal surfaces. Recent work, however, strongly suggests that density functionals (DFs) based on GGA exchange are not able to describe molecule-metal surface reactions for which the work function of the metal surface minus the electron affinity of the molecule is less than 7 eV. Systems for which this is true exhibit an increased charge transfer from the metal to the molecule at the transition state, increasing the delocalisation of the electron density.

View Article and Find Full Text PDF

We review the state-of-the-art in the theory of dissociative chemisorption (DC) of small gas phase molecules on metal surfaces, which is important to modeling heterogeneous catalysis for practical reasons, and for achieving an understanding of the wealth of experimental information that exists for this topic, for fundamental reasons. We first give a quick overview of the experimental state of the field. Turning to the theory, we address the challenge that barrier heights (E, which are not observables) for DC on metals cannot yet be calculated with chemical accuracy, although embedded correlated wave function theory and diffusion Monte-Carlo are moving in this direction.

View Article and Find Full Text PDF

Specific reaction parameter density functionals (SRP-DFs) that can describe dissociative chemisorption molecular beam experiments of hydrogen (H) on cold transition metal surfaces with chemical accuracy have so far been shown to be only transferable among different facets of the same metal, but not among different metals. We design new SRP-DFs that include non-local vdW-DF2 correlation for the H + Cu(111) system, and evaluate their transferability to the highly activated H + Ag(111) and H + Au(111) systems and the non-activated H + Pt(111) system. We design our functionals for the H + Cu(111) system since it is the best studied system both theoretically and experimentally.

View Article and Find Full Text PDF

Dissociation of methane on metal surfaces is of high practical and fundamental interest. Therefore there is currently a big push aimed at determining the simplest dynamical model that allows the reaction dynamics to be described with quantitative accuracy using quantum dynamics. Using five-dimensional quantum dynamical and full-dimensional ab initio molecular dynamics calculations, we show that the CD3 umbrella axis of CHD3 must reorient before the molecule reaches the barrier for C-H cleavage to occur in reaction on Pt(111).

View Article and Find Full Text PDF

We review the state-of-the art in dynamics calculations on the reactive scattering of H2 from metal surfaces, which is an important model system of an elementary reaction that is relevant to heterogeneous catalysis. In many applications, quantum dynamics and classical trajectory calculations are performed within the Born-Oppenheimer static surface model. However, ab initio molecular dynamics (AIMD) is finding increased use in applications aimed at modeling the effect of surface phonons on the dynamics.

View Article and Find Full Text PDF

Pediatric myelodysplastic syndrome (MDS) is a heterogeneous disease covering a spectrum ranging from aplasia (RCC) to myeloproliferation (RAEB(t)). In adult-type MDS there is increasing evidence for abnormal function of the bone-marrow microenvironment. Here, we extensively studied the mesenchymal stromal cells (MSCs) derived from children with MDS.

View Article and Find Full Text PDF

This perspective addresses four challenges facing theorists whose aim is to make quantitatively accurate predictions for reactions of molecules on metal surfaces, and suggests ways of meeting these challenges, focusing on dissociative chemisorption reactions of H(2), N(2), and CH(4). Addressing these challenges is ultimately of practical importance to a more accurate description of overall heterogeneously catalysed reactions, which play a role in the production of more than 90% of man-made chemicals. One challenge is to describe the interaction of a molecule with a metal surface with chemical accuracy, i.

View Article and Find Full Text PDF

The accuracy of dynamical models for reactive scattering of molecular hydrogen, H(2), from metal surfaces is relevant to the validation of first principles electronic structure methods for molecules interacting with metal surfaces. The ability to validate such methods is important to progress in modeling heterogeneous catalysis. Here, we study vibrational excitation of H(2) on Cu(111) using the Born-Oppenheimer static surface model.

View Article and Find Full Text PDF

Six-dimensional quantum dynamical and quasiclassical trajectory (QCT) calculations are reported for the reaction and vibrationally inelastic scattering of (v = 0,1,j = 0) H(2) scattering from Cu(110), and for the reaction and rovibrationally elastic and inelastic scattering of (v = 1,j = 1) H(2) scattering from Cu(110). The dynamics results were obtained using a potential energy surface obtained with density functional theory using the PW91 functional. The reaction probabilities computed with quantum dynamics for (v = 0,1,j = 0) were in excellent agreement with the QCT results obtained earlier for these states, thereby validating the QCT approach to sticking of hydrogen on Cu(110).

View Article and Find Full Text PDF