Publications by authors named "G von der Emde"

Animals possess senses which gather information from their environment. They can tune into important aspects of this information and decide on the most appropriate response, requiring coordination of their sensory and motor systems. This interaction is bidirectional.

View Article and Find Full Text PDF

African weakly electric fish communicate at night by constantly emitting and perceiving brief electrical signals (electric organ discharges, EOD) at variable inter-discharge intervals (IDI). While the waveform of single EODs contains information about the sender's identity, the variable IDI patterns convey information about its current motivational and behavioural state. Pairs of fish can synchronize their EODs to each other via echo responses, and we have previously formulated a 'social attention hypothesis' stating that fish use echo responses to address specific individuals and establish brief dyadic communication frameworks within a group.

View Article and Find Full Text PDF

The highly mobile chin appendage of Gnathonemus petersii, the Schnauzenorgan, is used to actively probe the environment and is known to be a fovea of the electrosensory system. It receives an important innervation from both the trigeminal sensory and motor systems. However, little is known about the premotor control pathways that coordinate the movements of the Schnauzenorgan, or about central pathways originating from the trigeminal motor nucleus.

View Article and Find Full Text PDF

Underwater object inspection by optical sensors is usually unreliable in turbid or dark environments. Here, we designed a biomimetic 'electric camera', inspired by weakly electric fish Gnathonemus petersii, which successfully use active electrolocation for this task. The device probed nearby objects with a weak electric field and captured 'electric images' of the targets by processing the object-evoked field modulations.

View Article and Find Full Text PDF