We performed a pump-probe experiment on the chiral magnet Cu_{2}OSeO_{3} to study the relaxation dynamics of its noncollinear magnetic orders, employing a millisecond magnetic field pulse as the pump and resonant elastic x-ray scattering as the probe. Our findings reveal that the system requires ∼0.2 s to stabilize after the perturbation applied to both the conical and skyrmion lattice phase, which is significantly slower than the typical nanosecond timescale observed in micromagnetics.
View Article and Find Full Text PDFMagnetic skyrmions are topologically protected spin textures with emergent particle-like behaviors. Their dynamics under external stimuli is of great interest and importance for topological physics and spintronics applications alike. So far, skyrmions are only found to move linearly in response to a linear drive, following the conventional model treating them as isolated quasiparticles.
View Article and Find Full Text PDFWe present a spectroscopic study of the magnetic properties ofFe3-δGeTe2single crystals with varying Fe content, achieved by tuning the stoichiometry of the crystals. We carried out x-ray absorption spectroscopy and analyzed the x-ray circular magnetic dichroism spectra using the sum rules, to determine the orbital and spin magnetic moments of the materials. We find a clear reduction of the spin and orbital magnetic moment with increasing Fe deficiency.
View Article and Find Full Text PDFMagnetic skyrmions are topologically protected magnetization vortices that form three-dimensional strings in chiral magnets. With the manipulation of skyrmions being key to their application in devices, the focus has been on their dynamics within the vortex plane, while the dynamical control of skyrmion strings remained uncharted territory. Here, we report the effective bending of three-dimensional skyrmion strings in the chiral magnet MnSi in orthogonal thermal gradients using small angle neutron scattering.
View Article and Find Full Text PDFvan der Waals materials provide a versatile toolbox for the emergence of new quantum phenomena and fabrication of functional heterostructures. Among them, the trihalide VI stands out for its unique magnetic and structural landscape. Here we investigate the spin and orbital magnetic degrees of freedom in the layered ferromagnet VI by means of temperature-dependent X-ray absorption spectroscopy and X-ray magnetic circular and linear dichroism.
View Article and Find Full Text PDF