Probiotics are widely prescribed for prevention of antibiotics-associated dysbiosis and related adverse effects. However, probiotic impact on post-antibiotic reconstitution of the gut mucosal host-microbiome niche remains elusive. We invasively examined the effects of multi-strain probiotics or autologous fecal microbiome transplantation (aFMT) on post-antibiotic reconstitution of the murine and human mucosal microbiome niche.
View Article and Find Full Text PDFEmpiric probiotics are commonly consumed by healthy individuals as means of life quality improvement and disease prevention. However, evidence of probiotic gut mucosal colonization efficacy remains sparse and controversial. We metagenomically characterized the murine and human mucosal-associated gastrointestinal microbiome and found it to only partially correlate with stool microbiome.
View Article and Find Full Text PDFMucosal Langerhans cells (LCs) originate from pre-dendritic cells and monocytes. However, the mechanisms involved in their in situ development remain unclear. Here, we demonstrate that the differentiation of murine mucosal LCs is a two-step process.
View Article and Find Full Text PDFBackground: Probiotics are commonly used after bariatric surgery; however, uncertainty remains regarding their efficacy. Our aim was to compare the effect of probiotics vs placebo on hepatic, inflammatory and clinical outcomes following laparoscopic sleeve gastrectomy (LSG).
Methods: This randomized, double-blind, placebo-controlled, trial of 6-month treatment with probiotics (Bio-25; Supherb) vs placebo and 6 months of additional follow-up was conducted among 100 morbidly obese nonalcoholic fatty liver disease (NAFLD) patients who underwent LSG surgery.
The oral epithelium contributes to innate immunity and oral mucosal homeostasis, which is critical for preventing local inflammation and the associated adverse systemic conditions. Nevertheless, the mechanisms by which the oral epithelium maintains homeostasis are poorly understood. Here, we studied the role of growth arrest specific 6 (GAS6), a ligand of the TYRO3-AXL-MERTK (TAM) receptor family, in regulating oral mucosal homeostasis.
View Article and Find Full Text PDF