The timing of germination is a key life-history trait in plants, which is strongly affected by the strength of seed dormancy. Continental-wide genetic variation in seed dormancy has been related to differences in climate and the timing of conditions suitable for seedling establishment. However, for predictions of adaptive potential and consequences of climatic change, information is needed regarding the extent to which seed dormancy varies within climatic regions and the factors driving such variation.
View Article and Find Full Text PDFThe timing of different life-history events is often correlated, and selection might only rarely be exerted independently on the timing of a single event. In plants, phenotypic selection has often been shown to favor earlier flowering. However, little is known about to what extent this selection acts directly versus indirectly via vegetative phenology, and if selection on the two traits is correlational.
View Article and Find Full Text PDFPremise: Climate warming has altered the start and end of growing seasons in temperate regions. Ultimately, these changes occur at the individual level, but little is known about how previous seasonal life-history events, temperature, and plant-resource state simultaneously influence the spring and autumn phenology of plant individuals.
Methods: We studied the relationships between the timing of leaf-out and shoot senescence over 3 years in a natural population of the long-lived understory herb Lathyrus vernus and investigated the effects of spring temperature, plant size, reproductive status, and grazing on spring and autumn phenology.
Premise: Timing of germination can strongly influence plant fitness by affecting seedling survival and by having cascading effects on later life-history traits. In seasonal environments, the period favorable for seedling establishment and growth is limited, and timing of germination is likely to be under stabilizing selection because of conflicting selection through survival and fecundity. Moreover, optimal germination time may vary among genotypes because of inherent differences in later life-history traits.
View Article and Find Full Text PDFThe importance of plants in the accumulation of organic contaminants from air and soil was recognized to the point that even regulatory predictive approaches now include a vegetation compartment or sub-compartment. However, it has recently been shown that many of such approaches lack ecological realism to properly evaluate the dynamic of air/plant/soil exchange, especially when environmental conditions are subject to sudden variations of meteorological or ecological parameters. This paper focuses on the development of a fully dynamic scenario in which the variability of concentrations of selected chemicals in air and plant leaves was studied weekly and related to the corresponding meteorological and ecological parameters, to the evaluate their influence.
View Article and Find Full Text PDF