Publications by authors named "G Zabow"

Smartphone ubiquity has led to rapid developments in portable diagnostics. While successful, such platforms are predominantly optics-based, using the smartphone camera as the sensing interface. By contrast, magnetics-based modalities exploiting the smartphone compass (magnetometer) remain unexplored, despite inherent advantages in optically opaque, scattering or auto-fluorescing samples.

View Article and Find Full Text PDF

Multispectral magnetic resonance imaging (MRI) contrast agents are microfabricated three-dimensional magnetic structures that encode nearby water protons with discrete frequencies. The agents have a unique radiofrequency (RF) resonance that can be tuned by engineering the geometric parameters of these microstructures. Multispectral contrast agents can be used as sensors by incorporating a stimulus-driven shape-changing response into their structure.

View Article and Find Full Text PDF

We have investigated the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs) as positive T contrast agents for low-field magnetic resonance imaging (MRI) at 64 millitesla (mT). Iron oxide-based agents, such as the FDA-approved ferumoxytol, were measured using a variety of techniques to evaluate T contrast at 64 mT. Additionally, we characterized monodispersed carboxylic acid-coated SPIONs with a range of diameters (4.

View Article and Find Full Text PDF

From microcircuits to metamaterials, the micropatterning of surfaces adds valuable functionality. For nonplanar surfaces, incompatibility with conventional microlithography requires the transfer of originally planar micropatterns onto those surfaces; however, existing approaches accommodate only limited curvatures. A microtransfer approach was developed using reflowable materials that transform between solid and liquid on demand, freely stretching to yield transfers that naturally conform down to nanoscale radii of curvature and arbitrarily complex topographies.

View Article and Find Full Text PDF

Meander-line, or zig-zag, MRI surface coils theoretically promise spatially uniform fields with optimal field localization close to the coil. In reality, they suffer poorer than expected field localizations and acquired images are often highly inhomogeneous, plagued by repeating stripe-like signal-loss artifacts. We show that both these detrimental effects arise from coil design based on the same invalid approximation in the underlying theory.

View Article and Find Full Text PDF