Background: Hypertrophic cardiomyopathy (HCM) is a widespread hereditary cardiac pathology characterized by thickened heart walls and rearrangement of cardiomyocytes. Despite extensive research, the mechanisms underlying HCM development remain poorly understood, impeding the development of effective therapeutic and diagnostic strategies. Recent studies have suggested a polygenic nature of HCM development alongside monogenic forms.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is a hereditary heart disease caused by mutations in the sarcomere genes, which is accompanied by myocardial fibrosis leading to progressive heart failure and arrhythmias. Recent studies suggest that the HCM development involves dysregulation of gene expression. Among the molecules involved in this process are microRNAs (miRNAs), which are short non-coding RNAs.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is the most common hereditary heart disease. The wide spread of high-throughput sequencing casts doubt on its monogenic nature, suggesting the presence of mechanisms of HCM development independent from mutations in sarcomeric genes. From this point of view, HCM may arise from the interactions of several HCM-associated genes, and from disturbance of regulation of their expression.
View Article and Find Full Text PDFMesenchymal stem/stromal cells (MSCs) represent a promising tool to treat cardiovascular diseases. One mode of action through which MSCs exert their protective effects is secretion of extracellular vesicles (EVs). Recently, we demonstrated that rat adipose-derived MSC-overexpressing stem cell factor (SCF) can induce endogenous regenerative processes and improve cardiac function.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are short, single-stranded, non-coding ribonucleic acid (RNA) molecules, which are involved in the regulation of main biological processes, such as apoptosis or cell proliferation and differentiation, through sequence-specific interaction with target mRNAs. In this study, we propose a workflow for predicting miRNAs function by analyzing the structure of the network of their target genes. This workflow was applied to study the functional role of miR-375 in the heart muscle (myocardium), since this miRNA was previously shown to be associated with heart diseases, and data on its function in the myocardium are mostly unclear.
View Article and Find Full Text PDF